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1 A theory of rational bubbles

The objective of this section is to show that bubbles can emerge in a finan-
cial market with perfectly rational traders and finite trading opportunities,
without asymmetric information on asset payoffs. This theory is at the basis
of the experimental design that we use in the main paper in which bubbles
can be rational or not depending on whether or not there is a cap on prices.
In this Supplementary Appendix, the theoretical analyses, presented in this
Section as well as the next two ones, focus on the case of self-financed traders
because their individual rationality constraints are very close to financiers’
ones in the trader/financier game used in the experiment presented in the
main paper.

Consider a financial market in which trading proceeds sequentially. There
are T agents, referred to as traders. Traders’ position in the market sequence
is random with each potential ordering being equally likely. Traders can trade
an asset that generates no cash flow and this is common knowledge.1 This
enables us to unambiguously define the fundamental value of the asset: it is
zero in our case because, if the asset cannot be resold, an agent would not
pay more than zero to buy it.

The asset is issued by agent 0, referred to as the issuer.2 The first trader
in the sequence is offered to buy the asset at a price P1. If he does so, he
proposes to resell at price P2 to the second trader. More generally, the t-th
trader in the sequence, t ∈ {1, ..., T − 1}, is offered to buy the asset at price
Pt and resell at price Pt+1 to the t + 1-th trader. Traders take the price
path as given, with Pt > 0 for t ∈ {1, ..., T}. Finally, the last trader in the
sequence is offered to buy the asset at price PT but cannot resell it. If the
t-th trader buys the asset and is able to resell it, his payoff is Pt+1 − Pt. If
he is unable to resell the asset, his payoff is −Pt. For simplicity, we consider
that if a trader refuses to buy the asset, the market process stops.

We consider that traders are risk neutral. We show in the next section
that our results hold with risk averse traders. Individual i has an initial
wealth denoted by Wi, i ∈ {1, ..., T}.3 As a benchmark, consider the case
in which traders have perfect information, that is, each trader i knows that
his position in the sequence is t and this is common knowledge. In this

1The asset cash flow could be positive and risky without changing our results.
2The potential bubbles that may arise in our environment can be interpreted as Ponzi

schemes, and the issuer of the asset as the scheme organizer.
3In our model, traders might end up with negative wealth.
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perfect information benchmark, it is straightforward to show that no trader
will accept to buy the asset except at a price of 0 which corresponds to the
fundamental value of the asset. Indeed, the last trader in the queue, if he
buys, ends up withWT−PT which is lower thanWT . Since he knows that he is
the last trader in the queue, he prefers not to trade. By backward induction,
this translates into a no-bubble equilibrium. This result is summarized in
the next proposition.

Proposition 1 When traders know their position in the market sequence,
the unique perfect Nash equilibrium involves no trade.

Let’s now consider what happens when traders do not initially know their
position in the market sequence, and this is common knowledge. We model
this situation as a Bayesian game. The set of players is {1, ..., T}. The set of
states of the world is Ω which includes the T ! potential orderings. ω refers
to a particular ordering. The set of actions is identical for each player i and
each position t and is denoted by A = {B, ∅} in which B stands for buy and
∅ for refusal to buy. Denote by ωit ⊂ Ω the set of orderings in which trader i’s
position in the market sequence is t. The set of signals that may be observed
by player i is the set of potential prices denoted by P . The signal function
of player i is τ (i) : ωit → Pt, in which Pt refers to the price that is proposed
to the t-th trader in the market sequence. The price path Pt is defined as
follows. The price P1 proposed to the first trader in the sequence is random
and is distributed according to the probability distribution g (.) on P .4 Other
prices are determined as Pt+1 = f (Pt), with f (.) : P → P being a strictly
increasing function that controls for the explosiveness of the price path. A
strategy for player i is a mapping Si : P → A in which Si (p) indicates
what action is chosen by player i after observing a price p. Conditional on
observing p = Pt, player i understands that the next player j in the market
sequence observes f (Pt), and that he chooses Sj (f (Pt)). Using the signal
function, players may learn about their position in the market sequence. A
strategy profile {S∗1 , ..., S∗T} is a Bayesian Nash equilibrium if the following
individual rationality (IR) conditions are satisfied:

E
[
π
[
S∗i (Pt) , S

∗
j (f (Pt))

]
|Pt
]
≥ E

[
π
[
Si (Pt) , S

∗
j (f (Pt))

]
|Pt
]

,

4One can consider that this first price P1 is chosen by Nature or by the issuer according
to a mixed strategy characterized by g (.).
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∀(i, j) ∈ {1, ..., T} × {1, ..., T}with j 6= i, and ∀Pt ∈ P.
π
[
Si (Pt) , S

∗
j (f (Pt))

]
represents the payoff received by the risk-neutral player

i given that he chooses action Si (Pt) and that other players choose actions
S∗j (f (Pt)). Remark that agents’ payoff not only depend on others’ actions
but also on the state of nature because it is possible that they are last in the
market sequence.

We now study under what conditions there exists a bubble equilibrium
{S∗1 = B, ..., S∗T = B}. The crucial parameter a player i has to worry about
in order to decide whether to enter a bubble is the conditional probability
to be last in the market sequence, P (ω ∈ ωiT |Pt). The IR condition can be
rewritten as:(
1− P

[
ω ∈ ωiT |Pt

])
× (Wi + f (Pt)− Pt) +P

[
ω ∈ ωiT |Pt

]
× (Wi − Pt) ≥ Wi,∀i ∈ {1, ..., T} , and ∀Pt ∈ P⇔

(
1− P

[
ω ∈ ωiT |Pt

])
× f (Pt) ≥ Pt,∀i ∈ {1, ..., T} , and ∀Pt ∈ P.

If P [ω ∈ ωiT |Pt] = 1 for some i and some Pt, the IR condition is not
satisfied and the bubble equilibrium does not exist. This is for example
the case when the support of the distribution g (.) is bounded above by a
threshold K. Indeed, a trader upon observing Pt = fT−1 (K) knows that he
is last and refuses to trade. Backward induction then prevents the existence
of the bubble equilibrium. The IR function is also not satisfied if the signal
function τ (i) is injective. Indeed, by inverting the signal function, players,
including the one who is last in the sequence, learn what their position is.
These results are summarized in the following proposition.

Proposition 2 The no-bubble equilibrium is the unique Bayesian Nash equi-
librium if i) the signal function is injective, ii) the first price is randomly
distributed on a support that is bounded above, iii) the price path is not ex-
plosive enough, or iv) the probability to be last in the market sequence is too
high.

We now propose an environment where the IR condition derived above
is satisfied. Consider that the set of potential prices is defined as P =
{mn for m > 1 and n ∈ N}, that is, prices are positive powers of a constant
m > 1. Also, assume that g (P1 = mn) = (1− q) qn, that is, the power
n follows a geometric distribution of parameter q ∈ (0, 1). Finally, we set
f (Pt) = m×Pt. If there are T players on the market, the probability that a
player i is last in the sequence, conditional on the price Pt that he is proposed,
is computed by Bayes’ rule:
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P
[
ω ∈ ωiT |Pt = mn

]
=

P [Pt = mn|ω ∈ ωiT ]× P [ω ∈ ωiT ]

P [Pt = mn]
=

(1− q) qn−(T−1) × 1
T∑j=n

j=n−(T−1) (1− q) qj × 1
T

=
1− q

1− qT
if n ≥ T − 1,

and P
[
ω ∈ ωiT |Pt = mn

]
= 0 if n < T − 1.

Under our assumptions, Bayes’ rule implies that the conditional probability
to be last in the market sequence is 0 if the proposed price is strictly smaller
than mT−1, and 1−q

1−qT if the proposed price is equal to or higher than mT−1.
This conditional probability thus does not depend on the level of the price
that is proposed to the players.5 The IR condition can be rewritten:(

q − qT

1− qT

)
×m ≥ 1.

This condition is less restrictive when there are more traders present on the
market.

There thus exists an infinity of price paths characterized bym ≥ 1−qT
q−qT that

sustain the existence of a bubble equilibrium. Obviously, there always exists
a no-bubble equilibrium.6 Indeed, if players anticipate that other players do
not enter the bubble, then they are better off refusing to trade. These results
are summarized in the next proposition.

Proposition 3 If i) the T traders are equally likely to be last in the mar-
ket sequence, ii) the price P1 proposed to the first trader in the sequence is
randomly chosen in powers of m according to a geometric distribution with
parameter q, and iii) Pt = m × Pt−1, ∀t ∈ {2, ..., T}, there exists a bubble

Bayesian Nash equilibrium if and only if m ≥ 1−qT
q−qT . There always exists a

no-bubble equilibrium.

Our results hold even if one introduces randomness in the underlying
asset payoff, and (potentially random) payments at interim dates. In the

5We implicitly assume here that players cannot observe if transactions occured before
they trade. However, we do not need such a strong assumption. For example, if each
transaction was publicly announced with a probability strictly smaller than one, our results
would still hold. This probability should be small enough so that the likelihood of being
last in the sequence is not too high.

6When there exists a bubble-equilibrium in pure strategies, there can also exist mixed-
strategies equilibria in which traders enter the bubble with a positive probability that is
lower than 1. We have characterized these equilibria for the two-player case. They involve
peculiar evolutions of the probability to enter the bubble depending on the price level that
is observed. We thus do not use these mixed-strategy equilibria in our analysis.
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next section, we show that our results hold if traders are risk averse. One
could be tempted to interpret our results as an inverse-Hirshleifer effect:
going from perfect to imperfect information seems to imply a creation of
gains from trade in our setting even with risk-neutral agents. However, note
that it is not possible to compute the ex-ante welfare created by the game
of imperfect information. Indeed, the expected payoffs of the players are
infinite. To see this, remark that these expected payoffs are equal to:

lim
x→+∞

[
m− 1

2
+
m (m− 1)

4
+

(
q − qT

1− qT
(m− 1)− 1− q

1− qT

) n=x∑
n=2

qn+1mn

]
.

This limit converges if and only if qm < 1 (see Section 3). This inequality

is in conflict with the IR condition according to which m ≥ 1−qT
q−qT . This

implies that the only games in which the ex-ante welfare is well-defined are
the games where only the no-bubble equilibrium exists. This makes it hard
to conclude that the imperfect information game is actually creating welfare
even if interim (that is, knowing the proposed price), all traders are strictly
better off entering the bubble if they anticipate that other traders are also
going to do so. A more extensive analysis of welfare in the bubble game is
offered in Section 3 of this Supplementary Appendix.
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2 Bubble equilibrium with risk aversion

Consider the environment in which a bubble-equilibrium exists when players
are risk-neutral. We now show that a bubble equilibrium can still exist if
players are risk averse. The environment is as follows. There are T players.
The set of potential prices is defined as P = {mn for m > 1 and n ∈ N}. The
price that is proposed to the first trader P1 is randomly determined following
a geometric distribution: g (P1 = mn) = (1− q) qn with q ∈ (0, 1). Finally,
the price path is defined as Pt+1 = m× Pt for t ∈ [1, ..., T − 1].

2.1 Piecewise linear utility function

For simplicity, we assume that utility functions are piecewise linear with a
kink at agents’ initial wealth, that is player i’s utility function is: Ui(x) =
x11x≤Wi

+ [Wi + (1− γi) (x−Wi)] 11x>Wi
, where γi ∈ ]0,1] is a measure of

player i’s risk aversion. Conditional on trader i expecting other traders to
buy, the IR condition is now written as:

(
(1− P [ω = ωtT |Pt])× Ui (Wi + f (Pt)− Pt)

+P [ω = ωtT |Pt]× Ui (Wi − Pt) ,

)
≥ Ui (Wi)

∀i ∈ {1, ..., T} , and ∀Pt ∈ P

⇔
(

(1− P [ω = ωtT |Pt])× [Wi + (1− γi) (f (Pt)− Pt)]
+P [ω = ωtT |Pt]× (Wi − Pt)

)
≥ Wi,

∀i ∈ {1, ..., T} , and ∀Pt ∈ P

⇔ γi ≤ 1− P [ω = ωtT |Pt]× Pt
(1− P [ω = ωtT |Pt]) (ft (Pt)− Pt)

, ∀i ∈ {1, ..., T} , and ∀Pt ∈ P

⇔ γi ≤ 1− (1− q)
(q − qT ) (m− 1)

, ∀i ∈ {1, ..., T} .

This inequality indicates that, if players are not too risk averse, there
exists a bubble equilibrium. Furthermore, the IR condition must hold for
all traders, that is, all trader must be not too risk averse. Consequently,
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uncertainty about other traders’ risk aversion may reduce the incentives to
enter into bubbles, as trader i may expect the IR condition of following trader
not to be satisfied because they would be too risk averse. Finally, when m
gets larger, the range of risk aversion for which a bubble equilibrium exists
is larger.

2.2 CRRA utility function

We now check that this results holds if utility functions are CRRA, that is
player i’s utility function is: Ui(x) = 1

1−θix
1−θi if θi > 0 and Ui(x) = ln(x)

if θi = 1, where θi is a measure of player i’s relative risk aversion. Let us
assume that the trader’s initial wealth Wi is larger than the price at which
he is offered to buy. For simplicity, we assume that Wi = Pt.

7 For θi 6= 1,
the IR condition is now written as:

(
(1− P [ω = ωtT |Pt])× Ui (Wi + f (Pt)− Pt)

+P [ω = ωtT |Pt]× Ui (Wi − Pt)

)
≥ Ui (Wi) ,

∀i ∈ {1, ..., T} , and ∀Pt ∈ P

⇔

(
(1− P [ω = ωtT |Pt])× 1

1−θi (Wi + f(Pt)− Pt)1−θi

+P [ω = ωtT |Pt]× 1
1−θi (Wi − Pt)1−θi

)
≥ 1

1− θi
(Wi)

1−θi ,

∀i ∈ {1, ..., T} , and ∀Pt ∈ P.

⇔ θi ≤ 1−
ln(1−qT

q−qT )

ln(m)
, ∀i ∈ {1, ..., T} .

The nature of this inequality is similar to the piecewise linear case.

7To see that this assumption does not change the probabilistic set up of the game,
consider that the organizer of the bubble game first draws the trading prices and then
picks the players appropriately according to their level of wealth. This requires that
potential wealth be infinite and that there is at least one agent for each level of wealth.
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3 Welfare analysis

This section shows that, when there is no price cap, the ex-ante expected
welfare (before observing the offered price) is not defined in the bubble game
at the bubble equilibrium. In this case, an agent with a non-bounded utility
function could not decide, ex-ante (that is, before being proposed a price),
whether playing this game is desirable or not. However, it is important to
remark that, interim (that is, as soon as agents are being proposed a price),
it is perfectly possible to compute the expected welfare (which is now finite
and positive). This implies that, if one were to create a Ponzi scheme that
follows our bubble game spirit, it would be optimal for this person to propose
agents to play the game after describing the rules of the game and proposing
a price at which they can buy. This is exactly what we do in the experiment.
As a result, consistently with the treatment of Bayesian Games offered by
Osborne and Rubinstein (1994, page 26), in any given play of the game, each
player knows his type (that is, the price he is offered) and does not need to
compute his ex-ante welfare. Consequently, the bubble game is a well-defined
Bayesian game. When there is a price cap, expected welfare is well-defined
both ex-ante and interim, and is negative.

Our game is related to the Super-Petersburg paradox of Menger (1934) as
discussed, for example by Samuelson (1977), and to the two-envelope prob-
lem when the expected dollar amount is infinite as discussed by Geanakoplos
(1992). In these two games, if participation is subject to a finite charge,
expected welfare is infinitely positive. Players would thus agree to play these
games. In the bubble game, the situation is a little different. Before being
proposed a price, players cannot determine whether the game is worth play-
ing because it involves comparing infinitely positive and negative payoffs.
However, after being proposed a price, expected utility can be computed
and might be positive, leading players to be willing to participate. Another
difference between the bubble game and the Super-Petersburg game is the
coordination of beliefs among players that must be achieved to reach the
equilibrium. This is similar to the two-envelope game in which it might be
profitable to switch an envelope only if the other player also switches.

3.1 Expected gains

We first show that without risk aversion, the ex-ante expected gains (before
observing the offered price) can be positive or negative depending on how

10



one computes conditional expectations.
We denote by π(P,O) the trader profit when the first price is P and

offered price is O.

When there is no price cap and all agents choose to enter the
bubble

E(π(P,O)) =
∞∑
n=0

3∑
j=1

P(P = 10n, O = 10n+j−1)× π(10n, 10n+j−1)

= P(P = 100, O = 100)× π(100, 100) + P(P = 100, O = 101)× π(100, 101)

+ P(P = 100, O = 102)× π(100, 102)

+ P(P = 101, O = 101)× π(101, 101) + P(P = 101, O = 102)× π(101, 102)

+ P(P = 101, O = 103)× π(101, 103)

+ P(P = 102, O = 102)× π(102, 102) + P(P = 102, O = 103)× π(102, 103)

+ P(P = 102, O = 104)× π(102, 104)

+ ...

= P(P = 100, O = 100)× (9× 100) + P(P = 100, O = 101)× (9× 101)

+ P(P = 100, O = 102)× (−102)

+ P(P = 101, O = 101)× (9× 101) + P(P = 101, O = 102)× (9× 102)

+ P(P = 101, O = 103)× (−103)

+ P(P = 102, O = 102)× (9× 102) + P(P = 102, O = 103)× (9× 103)

+ P(P = 102, O = 104)× (−104)

+ ...
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Conditioning first on the offered price (O), then on the first
price (P )

E(π(P,O)) = E (E(π(P,O))|O)

= P(O = 100)
[
P(P = 100|O = 100)× 9× 100

]
+ P(O = 101)

[
P(P = 100|O = 101)× 9× 101

+P(P = 101|O = 101)× 9× 101

]

+ P(O = 102)

 P(P = 100|O = 102)× (−102)
+P(P = 101|O = 102)× 9× 102

+P(P = 102|O = 102)× 9× 102


+ P(O = 103)

 P(P = 101|O = 103)× (−103)
+P(P = 102|O = 103)× 9× 103

+P(P = 103|O = 103)× 9× 103


+ ...

=
1

2

1

3
× 9× 100 + (

1

2
+

1

4
)
1

3
× 9× 101

+
∞∑
n=2

(
1

2n−1
+

1

2n
+

1

2n+1

)
1

3

(
4

7
(−10n) +

3

7
(9× 10n)

)
=

3

2
+

45

2
+

23

6

∞∑
n=2

5n

= +∞
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Conditioning first on the first price (P ), then on the offered
price (O)

E(π(P,O)) = E (E(π(P,O))|P )

= P(P = 100)

 P(O = 100|P = 100)× 9× 100

+P(O = 101|P = 100)× 9× 101

+P(O = 102|P = 100)× (−102)


+ P(P = 101)

 P(O = 101|P = 101)× 9× 101

+P(P = 102|O = 101)× 9× 102

+P(P = 103|O = 101)× (−103)


+ P(O = 102)

 P(O = 102|P = 102)× 9× 102

+P(O = 103|P = 102)× 9× 103

+P(O = 104|P = 102)× (−104)


+ ...

=
∞∑
n=1

(
1

2

)n(
1

3
× 9× 10n−1 +

1

3
× 9× 10n − 10n+1

)
= −1

6

∞∑
n=1

5n−1

= −∞

Depending on the way conditioning is done, the ex-ante expected payoff is
infinitely negative or positive. Such an ex-ante expected payoff is thus not
well-defined.

When there is a price cap and all agents choose to enter the
bubble In this case, using both ways of computing the expected profit
give the same answer. Below, we compute the expected profit in the case
where K = 1.

Conditioning first on the offered price (O), then on the first
price (P )

E(π(P,O)) = E (E(π(P,O))|O)

=
1

3
(9 + 90− 100) = −1

3

Conditioning first on the first price (P ), then on the offered
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price (O)

E(π(P,O)) = E (E(π(P,O))|P )

=

(
1

3
× 9 +

1

3
× 90− 1

3
× 100

)
= −1

3

Both ways of computing the conditional expectation yield the same con-
clusion: the ex-ante expected profit is negative.

3.2 Welfare analysis with risk aversion

We now analyze the welfare properties of our model when traders are risk
averse. To simplify notations, we focus on the case in which q = 1

2
and

m = 10. We show that, when the utility function is not bounded above, it is
not possible to compute the ex-ante welfare of the players even if they are risk
averse. The proof relies on the fact that the expected utility is well-defined
if and only if the expected absolute utility is finite.

Consider that player i’s utility function Ui is increasing and strictly con-
cave with Ui(+∞) = +∞. We assume that players’ initial wealth is null and
that they can end up with negative wealth.

Case 1 : Ui is such that Ui(0) = 0 Let us first assume that Ui is such
that Ui(0) = 0.

E (|Ui (Wf )|) =
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
3

7
Ui(9× 10n) +

4

7
|Ui(−10n)|

)
.

The IR condition imposes that for n ≥ 2:

3

7
Ui(9× 10n) +

4

7
Ui(−10n) ≥ Ui(0).

This yields:

E (|Ui (Wf )|) ≥
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
4

7
|Ui(−10n)| − 4

7
Ui(−10n) + Ui(0)

)
.

E (|Ui (Wf )|) ≥
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
−8

7
Ui(−10n) + Ui(0)

)
.
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By concavity of Ui, we have: for x < 0, Ui(x) < Ui(0) + xU ′i(0). This
yields for x = 10n:

E (|Ui (Wf )|) >
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
−8

7
(Ui(0)− 10nU ′i(0)) + Ui(0)

)

E (|Ui (Wf )|) >
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
−1

7
Ui(0) +

8

7
10nU ′i(0)

)
.

Since the series
∑n=+∞

n=2

(
1
2

)n+1 (−1
7
Ui(0) + 8

7
10nU ′i(0)

)
does not converge,

neither does E (Ui (Wf )).
It is straightforward to extend this reasoning to the case in which for

Ui(0) 6= 0 and in which Ui(.) takes both positive and negative values. We
now extend the proof to the cases in which Ui(.) does not change sign.

Case 2 : Ui is such that Ui(0) 6= 0 Let us, for example, assume that
for all w, Ui(w) < 0. This expected absolute utility is written as:

E (|Ui (Wf )|) =
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
3

7
|Ui(9× 10n)|+ 4

7
|Ui(−10n)|

)

E (|Ui (Wf )|) =
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
−3

7
Ui(9× 10n)− 4

7
Ui(−10n)

)
.

Since −3
7
Ui(9× 10n) > 0, we have :

E (|Ui (Wf )|) ≥
Ui(9)

2
+
Ui(9× 10)

4
+

n=+∞∑
n=2

(
1

2

)n+1(
−4

7
Ui(−10n)

)
.

By concavity of Ui, we have: for x < 0, Ui(x) < Ui(0) + xU ′i(0). This
yields:

E (|Ui (Wf )|) ≥
Ui(9)

2
+
Ui(9× 10)

4
+
n=+∞∑
n=2

(
1

2

)n+1(
4

7
(−Ui(0) + 10nU ′i(0))

)
.

Again, since
∑n=+∞

n=2

(
1
2

)n+1 (4
7

(−Ui(0) + 10nU ′i(0))
)

does not converge,
the expected utility does not converge. For this proof, we only use the con-
cavity of the utility function (the IR is not required).
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4 The Subjective Quantal Response Equilib-

rium of Rogers, Palfrey, and Camerer, 2009

4.1 The general SQRE model

We derive the conditional probabilities to buy for risk-neutral traders ob-
serving prices of P ∈ {1, 10...} in the SQRE model of Rogers, Palfrey, and
Camerer (2009).

The main features of this model are as follows. First, as in the CH model,
traders differ in their level of sophistication s. As in Camerer, Ho and Chong
(2004), we assume that traders’ types are distributed according to a Poisson
distribution F. Let τ denote the average level of sophistication.

Second, each player s thinks that he understands the game differently
than the others, and therefore form truncated beliefs about the fraction of
h-level players according to gs(h) = f(h)∑max(s−θ,0)

i=0 f(i)
. The parameter θ ∈ N

measures overconfidence. Camerer, Ho and Chong (2004) assume that people
are overconfident and do not realize there are others using exactly as many
thinking steps as they are, which implies that θ ≥ 0. The authors also
assume that players doing s ≥ 1 steps do not realize that others are using
more than s steps of thinking, which would be plausible because the brain
has limits (such as working memory in reasoning through complex games)
and also does not always understand its own limits. We relax this assumption
by considering that θ can be equal to 0.

Third, for reasons of parsimony and comparability to CH, we assume the
error parameter θ is common to all traders, whatever their level of sophisti-
cation.

Fourth, as in the QRE model, players make mistakes about the others’
type. The parameter λi,s characterizes the responsiveness to expected pay-
offs of trader i. The following logistic specification of the stochastic choice
function is assumed, so that, if the buy decision conditional on observing a
price P for a level-s player of type i yields an expected profit of ui,s(B|P )
while the no buy decision yields an expected profit of u∅, the probability to
buy is:

Pi,s(B|P ) =
eλi,sui,s(B|P )

eλi,sui,s(B|P ) + eλi,su∅

Fifth, each level-s player is independently assigned by nature a response
sensitivity, λi,s. For reasons of comparability both to CH and the QR, we
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assume that:
λi,s = λi + γs,

where λi is drawn from a commonly known distribution, Fi(λi). As in the
HQRE model, we assume that the distribution Fi(λi) is common knowledge,
but traders’ type, λi , is private information known only to i. We assume
that Fi is uniform [Λ − ε

2
,Λ + ε

2
]. For computational reasons, we discretize

this interval with a tick size t, therefore f(λi) = 1
ε
t
+1

= f .

Thus, it is a five parameter model with a Poisson parameter, τ , a spacing
parameter, γ, an overconfidence parameter, θ, an average error parameter,
Λ , and a parameter that controls the heterogeneity across traders’ types, ε.

4.1.1 Cap K

Consider the environment in which there is a cap K on the initial price. For
each price P ∈ {1, 10...100K}, each type i and each level s, we compute the
player’s expected utility if he buys, conditional on P , λi and s, in order to
determine the theoretical probability to buy for each price as a function of
the model’s parameters.

Consider first the case of a trader observing a price P = 100K. This trader
perfectly infers from this observation that he is third in the sequence. His
expected payoff is he buys is thus ui,s(B|P = 100K) = 0.

If he is a level-s player of type i, then λi,s = λi + γs and, he buys with
probability:

Pi,s(B|P = 100K) =
1

1 + eλi+γs

Given the distribution of type-i players, the average probability to buy of
a level-s player is:

Ps(B|P = 100K) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s(B|P = 100K)P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ+γs

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
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being P = 100K writes:

P (B|P = 100K) =
∞∑
s=0

τ s × exp (−τ)

s!
f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ+γs

Since we cannot compute this infinite sum, we numerically stop at smax =
100.

Notice that the CH model is a specific case of SQRE, with the following
constraints on the parameters: ε = Λ = 0, θ = 1 and γ → ∞. In this
case indeed, the probability to buy when P = 100K of a level-0 player is

1
1+eγ×0 = 1

2
, while for level-s players with s ≥ 1, limγ→∞

1
1+eγ×s

= 0.
Notice also that the QR model is also a specific case of SQRE, with the

following constraints on the parameters: τ = γ = ε = 0. In this case indeed,
the population is only composed of homogeneous level-0 players, for which
the probability to buy when P = 100K is 1

1+eΛ
.

Consider now the case of a trader observing a price P < 100K.
Let q(K,P ) be the probability not to be third conditional on observing the

price P , when the price cap is K. For instance, when K = 100, q(100, 1000) =
q(100, 100) = 1

2
while q(100, 10) = q(100, 1) = 1, but when K = 10, 000,

q(10000, 100000) = q(10000, 10000) = 1
2
, q(10000, 1000) = q(10000, 100) = 3

7

and q(10000, 10) = q(10000, 1) = 1.
The expected payoff of a level-s player of type i if he buys, ui,s, depends

first on his beliefs on the population (that is, on its truncation), and second,
for each level s, on the average probability to buy of a level-s player observing
a price P ′ = 10P . We have already defined above this probability for a level-s
player observing a price P ′ = 100K, namely Ps(B|P ′ = 100K). This will
enable us to find the expected payoff of a level-s player of type i observing
P = 10K if he buys, ui,s(B|P = 10K), thus the probability with which a
level-s player observing P = 10K buys. Recursively, we can therefore find the
probability with which a level-s player buys when he observes P = K,P =
K/10, and so on.

- If he is a level-s player, with s − θ ≤ 0, he thinks that all traders
observing P ′ = 10P are level-0 players who buy with an average probability
Ps=0(P ′ = 10P ). His expected payoff if he buys is therefore:

ui,s≤θ(B|P ) = 10q(K,P )× Ps=0(B|P ′ = 10P )
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Consequently:

Pi,s≤θ(B|P ) =
e(λi+γs)ui,s≤θ(B|P )

e(λi+γs)ui,s≤θ(B|P ) + e(λi+γs)

Given the distribution of type-i players, the average probability to buy of
level-s players is:

Ps≤θ(B|P ) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s≤θ(B|P )P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)ui,s≤θ(B|P )

e(λi+γs)ui,s≤θ(B|P ) + e(λi+γs)

- If he is a level-s player, with s − θ > 0, he thinks that the next player
observing the price P3 = 10 × P2 is a mixture of level-0, ..., level j,...,level
s− θ. Consequently, his expected profit if he buys writes:

ui,s>θ(B|P ) = 10q(10K,P )×
∑s−θ

j=0 Ps=j(B|P ′ = 10P )f(j)∑s−θ
j=0 f(j)

where f(j) = e−τ τ
j

j!
, while his profit if he does not buy is u∅ = 1.

His probability to buy is therefore:

Pi,s>θ(B|P ) =
e(λi+γs)×ui,s>θ(B|P )

e(λi+γs)×ui,s>θ(B|P ) + eλi+γs

Given the distribution of players of type i,

Ps>θ(B|P ) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s>θ(B|P )P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)×ui,s>θ(B|P )

e(λi+γs)×ui,s>θ(B|P ) + eλi+γs

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
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being P < 100K writes:

P (B|P ) =

max(s−θ,0)∑
s=0

τ s × exp (−τ)

s!
f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)ui,s≤θ(B|P )

e(λi+γs)ui,s≤θ(B|P ) + e(λi+γs)

+
∞∑

s=max(s−θ,0)+1

τ s × exp (−τ)

s!
f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)×ui,s>θ(B|P )

e(λi+γs)×ui,s>θ(B|P ) + eλi+γs

4.1.2 No cap

Consider now the environment in which there is no cap on the initial price.
Consider first the case of a trader observing a price P ≥ 100. Conditional
on observing this price, traders have a probability 3

7
not to be third.

- If he is a level-0 player of type i, then λi,s = λi. Given that θ ≥ 0,
he thinks that all traders observing P ′ = 10P are level-0 players who buy
with an average probability Ps=0(P ′ ≥ 100). His expected payoff if he buys
is therefore:

ui,s=0(B|P ≥ 100) = 10× 3

7
× Ps=0(B|P ′ ≥ 100)

Consequently:

Pi,s=0(B|P ≥ 100) =
eλiui,s=0(B|P≥100)

eλiui,s=0(B|P≥100) + eλi

Given the distribution of players of type i,

Ps=0(B|P ≥ 100) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s=0(B|P ≥ 100)P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλi
30
7
Ps=0(B|P ′≥100)

eλi
30
7
Ps=0(B|P ′≥100) + eλi

Therefore, Ps=0(B|P ≥ 100) is a fixed point, solution of the equation
above.

- If he is a level-s player, with 0 < s ≤ θ, then λi,s = λi + γs and he
thinks that all traders observing P ′ = 10P are level-0 players who buy with
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an average probability Ps=0(P ′ ≥ 100). His expected payoff if he buys is
therefore:

ui,s≤θ(B|P ) = 10× 3

7
× Ps=0(B|P ′ = 10P )

Consequently:

Pi,s≤θ(B|P ) =
e(λi+γs)ui,s≤θ(B|P )

e(λi+γs)ui,s≤θ(B|P ) + e(λi+γs)

Given the distribution of players of type i,

Ps≤θ(B|P ≥ 100) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s≤θ(B|P ≥ 100)P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)
30
7
Ps=0(B|P ′≥100)

e(λi+γs)
30
7
Ps=0(B|P ′≥100) + e(λi+γs)

- If he is a level-s player, with s > θ, then λi,s = λi + γs and he thinks
that the traders observing P ′ = 10P are a mixture of level-0,..., level-j,...,
level s− θ players who buy with an average probability Pj(B|P ′ ≥ 100). His
expected payoff if he buys is therefore:

ui,s>θ(B|P ≥ 100) = 10× 3

7
×
∑s−θ

j=0 Pj(B|P ′ ≥ 100)f(j)∑s−θ
j=0 f(j)

We have computed above Pj(B|P ′ ≥ 100) for j ∈ {0, ..., θ}. For θ < s ≤
2θ,

ui,s>θ(B|P ≥ 100) = 10× 3

7
×
∑s−θ

j=0 Pj≤θ(B|P ′ ≥ 100)f(j)∑s−θ
j=0 f(j)

.

Consequently, the expected utility of buying for level-s players, for θ <
s ≤ 2θ, is well-defined. Then for s > 2θ,

ui,s>θ(B|P ≥ 100) = 10× 3

7

×
∑θ

j=0 Pj≤θ(B|P ′ ≥ 100)f(j) +
∑s−θ

j=θ+1 Pj>θ(B|P ′ ≥ 100)f(j)∑s−θ
j=0 f(j)
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When θ > 0, the expected utility of buying for level-s players, for s > 2θ,
can be defined recursively (by recurrence).

Pi,s>θ(B|P ≥ 100) =
e(λi+γs)ui,s>θ(B|P≥100)

e(λi+γs)ui,s>θ(B|P≥100) + e(λi+γs)

Given the distribution of players of type i,

Ps>θ(B|P ≥ 100) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi,s>θ(B|P ≥ 100)P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)ui,s>θ(B|P≥100)

e(λi+γs)ui,s>θ(B|P≥100) + e(λi+γs)

When θ = 0 however, the probability with which a level-s player buys is
a fixed point. Indeed, if pj = Pj(B|P ′ ≥ 100),

ui,s>0(B|P ≥ 100) = 10× 3

7
×
∑s−1

j=0 pjf(j) + psf(s)∑s
j=0 f(j)

Probabilities pj for j < s can be found recursively. Given the distribution of
traders’ types:

Ps(B|P ≥ 100) = ps = f

Λ+ ε
2∑

λ=Λ− ε
2

e
(λ+γs) 30

7

∑s−1
j=0

pjf(j)+psf(s)∑s
j=0

f(j)

e
(λ+γs) 30

7

∑s−1
j=0

pjf(j)+psf(s)∑s
j=0

f(j) + e(λ+γs)

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
being P ≥ 100 writes:

P (B|P ) =

max(s−θ,0)∑
s=0

e−τ
τ s

s!
f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)ui,s≤θ(B|P )

e(λi+γs)ui,s≤θ(B|P ) + e(λi+γs)

+
∞∑

s=max(s−θ,0)+1

e−τ
τ s

s!
f

Λ+ ε
2∑

λ=Λ− ε
2

e(λi+γs)×ui,s>θ(B|P )

e(λi+γs)×ui,s>θ(B|P ) + eλi+γs
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Consider now the case of a trader observing a price P < 100. Conditional
on observing this price, traders have a probability 1 not to be third. The
probability to buy of a level-s player of type i can be found recursively as in
the case where there is a cap.

4.2 The TQRE model of Rogers, Palfrey, and Camerer,
2009, and its limit to the Cognitive Hierarchy model

In this subsection, we show that the TQRE model is a specific case of the
SQRE model, with the constraints ε = Λ = 0, and θ = 1.

Indeed, the SQRE constrained on ε, Λ and θ is a two-parameter model
with Poisson parameter, τ , and a spacing parameter, γ. First, as in the
CH model, traders differ in their level of sophistication s. Traders’ levels
are distributed according to a Poisson distribution F with mean τ . When
θ = 1, each player s thinks that he understands the game differently than
the others, and therefore form truncated beliefs about the fraction of h-level
players according to gs(h) = f(h)∑s−1

i=0 f(i)
. Second, as in the QRE model, players

make mistakes about the others’ type. In the SQRE, the parameter λi,s
characterizes the responsiveness to expected payoffs. The following logistic
specification of the stochastic choice function is assumed, so that, if the
buy decision conditional on observing a price P yields an expected profit
of u(B|P ) while the no buy decision yields an expected profit of u∅, the
probability to buy is:

P(B|P ) =
eλi,su(B|P )

eλi,su(B|P ) + eλi,su∅
.

When ε = Λ = 0, there is no heterogeneity across traders’ types, as λi =
0, but skill levels are Poisson distributed and equally space λs = γ × s.
This model therefore corresponds to the discretized TQRE model of Rogers,
Palfrey, and Camerer, 2009.

Below, we derive the probabilities to buy conditional on each price, as a
function of τ and γ.

4.2.1 Cap K=1

Consider the environment in which there is a cap K = 1 on the initial
price. We derive the conditional probabilities to buy for risk-neutral traders
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observing prices of P ∈ {1, 10, 100} in the SQRE model of Rogers, Palfrey,
and Camerer (2009), constrained to ε = Λ = 0, and θ = 1. Given that there
is no heterogeneity in λi, it is always the case that Ps(B|P ) = Pi,s(B|P ).

Consider first the case of a trader observing a price P = 100. This trader
perfectly infers from this observation that he is third in the sequence. His
expected payoff is he buys is thus ui,s(B|P = 100) = 0.

If he is a level-s player, then λi,s = γs and, he buys with probability:

Ps(B|P = 100) =
1

1 + eγs

As in the CH model, notice that level-0 players buy with probability 1
2
. In

contrast though, when γ is finite, higher-level players also buy in the TQRE
model, but the probability with which they make a mistake decreases with
their level of sophistication and with γ. When γ →∞, no player with s > 0
buys, and the limit of the TQRE model is thus the CH model.

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
being P = 100K writes:

P (B|P = 100) =
∞∑
s=0

τ s × exp (−τ)

s!

1

1 + eγs

Since we cannot compute this infinite sum, we numerically stop at smax =
100.

Consider now the case of a trader observing a price P = 10. This trader
perfectly infers from this observation that he is second in the sequence. The
expected payoff of a level-s player if he buys, us, depends first on his beliefs
on the population (that is, on its truncation), and second, for each level
s, on the average probability to buy of a level-s player observing a price
P ′ = 10P = 100. We have already defined above this probability for a level-s
player observing a price P ′ = 100, namely Ps(B|P ′ = 100). This will enable
us to find the expected payoff of a level-s player of type i observing P = 10
if he buys, us(B|P = 10), thus the probability with which a level-s player
observing P = 10 buys.
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- If he is a level-s player, with s ≤ 1, he thinks that all traders observing
P ′ = 100 are level-0 players who buy with an average probability Ps=0(P ′ =
100) = 1

2
. His expected payoff if he buys is therefore:

us≤1(B|P = 10) = 10× 1

2

Consequently:

Ps≤1(B|P = 10) =
e5γs

e5γs + eγs

Again, notice that level-0 players buy with probability 1
2

as in the CH
model. Now, level-1 players buy with a larger probability when they observe
P = 10 than when they observe P = 100, since e5γ

e5γ+eγ
> 1

1+eγ
. In the CH

model, which is obtained at the limit when γ →∞, level-1 traders even buy
with probability 1, as they think that the population is only composed of
level-0 traders who buy with probability 1

2
.

- If he is a level-s player, with s > 1, he thinks that the next player
observing the price P3 = 10× P2 = 100 is a mixture of level-0, ..., level-j,...,
level s− 1. Consequently, his expected profit if he buys writes:

us>1(B|P = 10) = 10×
∑s−1

k=0 Ps=k(B|P ′ = 100)f(k)∑s−1
k=0 f(k)

= 10×
∑s−1

j=0
1

1+eγj
f(j)∑s−1

j=0 f(j)

where f(j) = e−τ τ
j

j!
, while his profit if he does not buy is u∅ = 1.

His probability to buy is therefore:

Ps>1(B|P = 10) =
e

10γs

∑s−1
j=0

1
1+eγj

τj

j!∑s−1
j=0

τj
j!

e
10γs

∑s−1
j=0

1
1+eγj

τj
j!∑s−1

j=0
τj
j! + eγs

In the CH model, which is obtained at the limit when γ →∞, only level-
0 players buy when they observe P = 100. We have seen that this induces
level-1 players to buy when P = 10. What about higher level players? If s
and τ are such that:

10

∑s−1
j=0

1
1+eγj

τ j

j!∑s−1
j=0

τ j

j!

> 1,
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then Ps>1(B|P = 10) → 1, else Ps>1(B|P = 10) → 0. For a fixed τ , there
may exist low level-s players for which the probability with which the trader
observing P = 100 would be sufficiently large to induce him to buy, given that
they have a truncated belief on the population, while for higher level players,
who have a more accurate perception of the proportion of level-0 players, this
would not be the case. The number of levels s such that buying is profitable
decreases with τ , as this parameter influences the ”true” proportion of level-0
players in the population.

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
being P = 10 writes:

P (B|P = 10) =
1

2
e−τ +

∞∑
s=1

e−τ
τ s

s!

e
10γs

∑s−1
j=0

1
1+eγj

τj

j!∑s−1
j=0

τj
j!

e
10γs

∑s−1
j=0

1
1+eγj

τj
j!∑s−1

j=0
τj
j! + eγs

Consider finally the case of a trader observing a price P = 1. This trader
perfectly infers from this observation that he is first in the sequence. The
expected payoff of a level-s player of type i if he buys, us, depends first on
his beliefs on the population (that is, on its truncation), and second, for each
level s, on the average probability to buy of a level-s player observing a price
P ′ = 10P = 10. We have already defined above this probability for a level-s
player observing a price P ′ = 10, namely Ps(B|P ′ = 10). This will enable us
to find the expected payoff of a level-s player of type i observing P = 1 if he
buys, us(B|P = 1), thus the probability with which a level-s player observing
P = 1 buys.

- If he is a level-s player, with s ≤ 1, he thinks that all traders observing
P ′ = 10 are level-0 players who buy with an average probability Ps=0(P ′ =
10) = 1

2
. His expected payoff if he buys is therefore:

us≤1(B|P = 1) = 10× 1

2

Consequently:

Ps≤1(B|P = 1) =
e5γs

e5γs + eγs
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Again, notice that level-0 players buy with probability 1
2

as in the CH
model. Level-1 players buy as often as when they observe P = 10.

- If he is a level-s player, with s > 1, he thinks that the next player
observing the price P2 = 10× P1 = 10 is a mixture of level-0, ..., level s− 1.
Consequently, his expected profit if he buys writes:

us>1(B|P = 1) = 10×
∑s−1

j=0 Ps=j(B|P ′ = 10)f(j)∑s−1
j=0 f(j)

= 10×

1
2

+
∑s−1

j=1
τ j

j!
e

10γj

∑j−1
k=0

1
1+eγk

τk

k!∑j−1
k=0

τk
k!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k! +eγj∑s−1

j=0
τ j

j!

The probability with which a level-s player buys for s > 1 is:

Ps>1(B|P = 1) =
e

10γs

1
2 +

∑s−1
j=1

τj

j!
e

10γj

∑j−1
k=0

1
1+eγk

τk

k!∑j−1
k=0

τk
k!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k! +eγj∑s−1

j=0
τj
j!

e
10γs

1
2 +

∑s−1
j=1

τj
j!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k! +eγj∑s−1

j=0
τj
j! + eγs

In the CH model, which is obtained at the limit when γ → ∞, we have
seen that higher level players may buy when observing P = 10, depending
on the value of τ . Let us assume that in the constrained model, τ is such
that level-s players buy when P = 10 if s ≤ S̄, and do not buy if s > S̄, with
S̄ ≥ 1. Given the expected utility of a level-s player observing P = 10 if he
buys, S̄ is such that:

10
1
2∑S̄−1

j=0
τ j

j!

> 1,
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while

10
1
2∑S̄

j=0
τ j

j!

< 1.

Would a level-S̄+ 1 player buy when P = 1? When γ →∞, his expected
utility if he buys writes:

ui,s=S̄+1(B|P = 1) = 10×
∑S̄

j=0 Ps=j(B|P ′ = 10)f(j)∑S̄
j=0 f(j)

But when P = 10, level-0 player buy with probability 1
2

while all players such
that s ≤ S̄ buy with probability 1. Consequently,

ui,s = 10×
1
2

+
∑S̄

j=1
τ j

j!∑S̄
j=0

τ j

j!

= 10− 10
1
2∑S̄

j=0
τ j

j!

,

which is strictly larger than 1, the expected utility of the trader if he does
not buy, by definition of S̄ above. Consequently, even higher level players
are induced to buy when P = 1: there is a snowballing effect.

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
being P = 1 writes:

P (B|P = 10) = (
1

2
+ τ

e5γ

e5γ + eγ
)e−τ

+
∞∑
s=2

e−τ
τ s

s!

e
10γs

1
2 +

∑s−1
j=1

τj

j!
e

10γj

∑j−1
k=0

1
1+eγk

τk

k!∑j−1
k=0

τk
k!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k! +eγj∑s−1

j=0
τj
j!

e
10γs

1
2 +

∑s−1
j=1

τj
j!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k!

e

10γj

∑j−1
k=0

1
1+eγk

τk
k!∑j−1

k=0
τk
k! +eγj∑s−1

j=0
τj
j! + eγs
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4.2.2 No cap

Consider the environment in which there is no cap on the initial price. We
derive the conditional probabilities to buy for risk-neutral traders observing
prices of P ∈ {1, 10, 100, ...} in the SQRE model of Rogers, Palfrey, and
Camerer (2009), constrained to ε = Λ = 0, and θ = 1.
Consider first the case of a trader observing a price P ≥ 100. Conditional
on observing this price, traders have a probability 3

7
not to be third.

- If he is a level-0 player, then λi,s = 0 and buys with probability:

P0(B|P ≥ 100) =
e0

e0 + e0
=

1

2

- If he is a level-1 player, then λi,s = γ and he thinks that all traders
observing P ′ = 10P are level-0 players who buy with an average probability
Ps=0(P ′ ≥ 100). Given that we have computed this probability above, his
expected payoff if he buys is therefore:

u1(B|P ≥ 100) = 10× 3

7
× Ps=0(B|P ′ ≥ 100) =

15

7

Consequently:

P1(B|P ≥ 100) =
e

15
7
γ

e
15
7
γ + eγ

- If he is a level-s player, with s > 1, then λi,s = γs and he thinks that the
traders observing P ′ = 10P are a mixture of level-0,...,level j,.., level s − 1
players who buy with an average probability Pj(P ′ ≥ 100). His expected
payoff if he buys is therefore:

us>1(B|P ≥ 100) = 10× 3

7
×
∑s−1

j=0 Pj(B|P ′ ≥ 100)f(j)∑s−1
j=0 f(j)

We have computed above Pj(B|P ′ ≥ 100) for j ∈ {0, 1}. The expected
utility of buying for level-2 players is thus well-defined:

u2(B|P ≥ 100) = 10× 3

7
×

1
2

+ τ e
15
7 γ

e
15
7 γ+eγ

1 + τ

This enables us to compute P2(B|P ≥ 100), which it itself used to find
the expected utility of buying for level-3 players. Finally, the probability to
buy of a level-s player observing P ≥ 100 can be computed recursively.
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In the CH model, which is obtained at the limit when γ → ∞, level-0
players buy with probability 1

2
when P ≥ 100, thus level-1 players buy since

15
7
> 1, thus level-2 players buy since 103

7

1
2

+τ

1+τ
> 1 whatever τ . Finally, all

level-s players buy for s ≥ 1 since whatever τ :

30

7

1
2

+
∑s−1

j=1
τ j

j!∑s−1
j=0

τ j

j!

> 1

Finally, given that there is a fraction f (s) = τs×exp(−τ)
s!

of level-s traders
in the population, the overall probability to buy conditional on the price
being P ≥ 100 writes:

P (B|P ≥ 100) =
∞∑
s=0

e−τ
τ s

s!
Ps(B|P ≥ 100)

Consider now the case of a trader observing a price P < 100. Conditional
on observing this price, traders have a probability 1 not to be third. The
probability to buy of a level-s player of type i can be found as in the case
where there is a cap.

In the CH model, which is obtained at the limit when γ → ∞, as all
level-s players where s ≥ 1 buy when P ≥ 100, all level-s players where
s ≥ 1 buy when P < 100, and only level-0 players buy with a probability 1

2
.

Consequently, the probability to buy in the CH model is constant whatever
the price and equal to 1− 1

2
e−τ .

4.3 The HQRE model of Rogers, Palfrey, and Camerer,
2009, and its limit to the Quantal Response Equi-
librium model

In this subsection, we show that the HQRE model is a specific case of the
SQRE model, with the constraint τ = 0 (γ and θ = 1 do not play a role in
this case).

Indeed, the SQRE constrained to τ = 0 is a two-parameter model with an
average error parameter, Λ , and a parameter that controls the heterogeneity
across traders’ types, ε. First, as in the QRE model, players make mistakes
about the others’ type. In the SQRE, the parameter λi,s characterizes the
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responsiveness to expected payoffs of trader i. The following logistic specifi-
cation of the stochastic choice function is assumed, so that, if the buy decision
conditional on observing a price P yields an expected profit of u(B|P ) while
the no buy decision yields an expected profit of u∅, the probability to buy
is:

Pi(B|P ) =
eλi,su(B|P )

eλi,su(B|P ) + eλi,su∅
,

Second, when τ = 0, all players are level-0 players, therefore λi,s = λi, where
λi is drawn from a commonly known distribution, Fi(λi), which is uniform
on [Λ − ε

2
,Λ + ε

2
]. We discretize this interval with a tick size t, therefore

f(λi) = 1
ε
t
+1

= f .

Below, we derive the probabilities to buy conditional on each price, as a
function of Λ and ε.

4.3.1 Cap K=1

Consider the environment in which there is a cap K = 1 on the initial
price. We derive the conditional probabilities to buy for risk-neutral traders
observing prices of P ∈ {1, 10, 100} in the SQRE model of Rogers, Palfrey,
and Camerer (2009), constrained to τ = 0.

Consider first the case of a trader observing a price P = 100. This trader
perfectly infers from this observation that he is third in the sequence. His
expected payoff is he buys is thus ui,s(B|P = 100) = 0.

If he is a type i, then λi,s = λi and he buys with probability:

Pi(B|P = 100) =
1

1 + eλi

Given the distribution of type-i players, the average probability to buy
at price P = 100 is:

P(B|P = 100) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi(B|P = 100)P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ
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Recall that the QR model is also a specific case of SQRE, with the addi-
tional constraint ε = 0. In this case, the probability to buy when P = 100
simplifies to 1

1+eΛ
.

Consider now the case of a trader observing a price P = 10. This trader
perfectly infers from this observation that he is second in the sequence. The
expected payoff of a player of type i if he buys, ui, depends on the average
probability to buy of players observing a price P ′ = 10P = 100. We have
already defined this probability above, namely P (B|P ′ = 100). Thus:

ui(B|P = 10) = 10× P(B|P ′ = 100) = 10f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ

Consequently:

Pi(B|P = 10) =
e

10λif
∑Λ+ ε

2
λ=Λ− ε2

1

1+eλ

e
10λif

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ + eλi

Given the distribution of type-i players, the average probability to buy
when P = 10 is:

P(B|P = 10) =

Λ+ ε
2∑

λ2=Λ− ε
2

Pi(B|P = 10)P(λi = λ2)

= f

Λ+ ε
2∑

λ2=Λ− ε
2

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ + eλ2

When Λ > 0, some traders may buy the asset when P = 100. Thus buying
generates a larger expected profit when P = 10, therefore more traders buy
at this price: there is again a snowballing effect.

Consider finally the case of a trader observing a price P = 1. This trader
perfectly infers from this observation that he is third in the sequence. The
expected payoff of a player of type i if he buys, ui, depends on the average
probability to buy of players observing a price P ′ = 10P = 10. We have
already defined this probability above, namely P (B|P ′ = 10). Thus:

ui(B|P = 1) = 10× P(B|P ′ = 10) = 10f

Λ+ ε
2∑

λ2=Λ− ε
2

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ + eλ2
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Given the distribution of type-i players, the average probability to buy
when P = 1 is finally:

P(B|P = 1) =

Λ+ ε
2∑

λ3=Λ− ε
2

Pi(B|P = 1)P(λi = λ3)

= f

Λ+ ε
2∑

λ3=Λ− ε
2

e

λ3×10f
∑Λ+ ε

2
λ2=Λ− ε2

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ +eλ2

e

λ3×10f
∑Λ+ ε

2
λ2=Λ− ε2

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ

e
10λ2f

∑Λ+ ε
2

λ=Λ− ε2
1

1+eλ +eλ2 + eλ3

4.3.2 No cap

Consider first the case of a trader observing a price P ≥ 100. Let pe be his
expectation on the probability with which other traders, observing P ′ ≥ 100,
buy. His expected profit if he buys write:

ui(B|P ≥ 100) = 10× 3

7
× pe

His probability to buy is then:

Pi(B|P ≥ 100) =
eλi

30pe

7

eλi
30pe

7 + eλi

Given the distribution of traders’ types:

P(B|P ≥ 100) =

Λ+ ε
2∑

λ=Λ− ε
2

Pi(B|P ≥ 100)f(λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλi
30pe

7

eλi
30pe

7 + eλi

Thus the overall probability to buy p is a fixed point:

p = f

Λ+ ε
2∑

λ=Λ− ε
2

eλ10× 3
7
×p

eλ10× 3
7
×p + eλ

.
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Consider now the case of a trader observing a price P < 100. Conditional
on observing this price, traders have a probability 1 not to be third. The
probability to buy of a type i player can be found as in the case where there
is a cap.

4.4 An extension of the Cognitive Hierarchy model
with overconfidence (OCH)

In this section, we extend the CH model to the case where the parameter
θ can possibly take negative values. As in the CH model, traders differ in
their level of sophistication s. Following Camerer, Ho and Chong (2004),
we assume that s is distributed according to a Poisson distribution F with
mean τ . Each player s thinks that he understands the game differently than
other players, and forms truncated beliefs about the fraction of h-level players
according to gs(h) = f(h)∑max(s−θ,0)

i=0 f(i)
.

For reasons of parsimony and comparability to CH, we assume the trun-
cation error parameter θ is common to all traders, whatever their level of
sophistication. We say that an agent is overconfident if the level of sophisti-
cation he expects in the population of players is lower than what it actually
is. θ is then an index of overconfidence. When it is −∞, there is no over-
confidence: each player adequately perceives the proportion of each level of
sophistication. When it is +∞, there is maximal overconfidence: each play-
ers believes that all other players are level 0. OCH is a two-parameter model
with a Poisson parameter, τ , and an imagination parameter, θ. For each
price P and each level s, we therefore compute the player’s expected utility
if he buys, conditional on P and s, in order to determine the theoretical
probability to buy for each price as a function of the model’s parameters τ
and θ.

4.4.1 K=1

Consider the environment in which the cap on the initial price is equal to
K = 1. We derive the conditional probabilities to buy for risk-neutral traders
observing prices of P = 1, P = 10 and P = 100 respectively, in the OCH
model.
Consider first the case of a trader observing a price P = 100. This trader
perfectly infers from this observation that he is third in the sequence. Conse-
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quently, in this model, he only buys if he is a level-0 player. Given that there

is a fraction f (0) = τ0×exp(−τ)
0!

of such traders in the population, and given
that these traders buy randomly with probability Pr (B|P = 100, s = 0) = 1

2
,

the probability to buy conditional on the price being P = 100 writes:

P (B|P = 100) =
1

2
exp (−τ)

Consider now the case of a trader observing a price P = 10. This trader
perfectly infers from this observation that he is second in the sequence.

- If he is a level-0 player, he buys with probability P (B|P = 10, s = 0) =
1
2
.

- If he is a level-1 player, he thinks that the next player observing the
price P3 = 10×P2 is a mixture of level-0, level-1, ..., level 1−θ. Consequently,
his expected profit if he buys writes:

u1(B|P = 10) =

(
1

2
× 10

)
× f (0)∑max(1−θ,0)

i=0 f(i)
,

where f(i) = e−τ τ
i

i!
, while his profit if he does not buy is u∅ = 1.

u1(B|P = 10, θ ≥ 1) =

(
1

2
× 10

)
> u∅

u1(B|P = 10, θ < 1) =

(
1

2
× 10

)
× f (0)

f (0) + f (1) + ...+ f (1− θ)

=
5

1 + τ + ...+ τ1−θ

(1−θ)!

This shows that the parameter θ is not always identifiable. Indeed, when
θ ≥ 1, the probability to buy is one for any value of θ.

When θ < 1, buying is beneficial if:

u1(B|P = 10, θ < 1) > u1(�|P = 10, θ < 1) ⇐⇒ 5

1 + τ + ...+ τ1−θ

(1−θ)!

> 1

When θ > 1 and τ < ln 5, the last inequality is satisfied for any value of
θ so that this parameter is not identifiable. The same logic applies for all
potential prices, step levels, and caps on prices. The threshold on the value
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of τ for which we cannot identify θ is different depending on the probability
to resell.

The probability to buy is therefore:

P(B|P = 10, s = 1) = 1 if θ ≥ 1

= 1 if θ < 1 and 1 + τ + ...+
τ 1−θ

(1− θ)!
< 5

= 0 if θ < 1 and 1 + τ + ...+
τ 1−θ

(1− θ)!
≥ 5

- More generally, if he is a level-s player with s ≥ 2, he thinks that the
next player observing the price P3 = 10 × P2 is a mixture of level-0, level-1
... level-s − θ players, precisely a level-0 with probability f (0) = exp (−τ),
a level-1 with probability f (1) = τ × exp (−τ), ... and a level-s − θ player
with the truncated probability 1−

∑s−θ
i=0 f (i). Given that he expects level-s-1

players (for s ≥ 2) not to buy at price 100, his expected profit if he buys
writes:

us≥2(B|P = 10) = (
f(0)∑max(s−θ,0)

i=0 f(i)
× 1

2
)× 10

where f(i) = e−τ τ
i

i!
.

us≥2(B|P = 10) =
1∑max(s−θ,0)

i=0
τ i

i!

× 1

2
× 10,

The probability with which the trader s ≥ 2 buys conditional on observing
P = 10 writes:

P(B|P = 10, s) = 1 if

max(s−θ,0)∑
i=0

τ i

i!
< 5

= 0 otherwise

Finally, given the distribution of players, and since f(0) = e−τ , the prob-
ability to buy conditional on the price being P = 10 writes:

P(B|P = 10) = e−τ

(
1

2
+
∞∑
s=1

τ s

s!
× 1∑max(s−θ,0)

i=0
τi

i!
<5

)
.

Since we cannot numerically compute this infinite sum, we stop numeri-
cally at s = 100.
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Consider finally the case of a trader observing a price P = 1. This trader
perfectly infers from this observation that he is first in the sequence.

- If he is a level-0 player, he buys with probability P (B|P = 1, s = 0) = 1
2
.

- If he is a level-s player with s ≥ 1, he thinks that the next player
observing the price P2 = 10×P1 is a mixture of level-0, level-1 ... level-s− θ
players. His expected profit writes:

us≥1(B|P = 1) =

∑max(s−θ,0)
j=0 f(j)P(B|P = 10, S̃ = j)∑max(s−θ,0)

i=0 f(i)
× 10

which simplifies to:

us≥1(B|P = 1) =

∑max(s−θ,0)
j=0

τ j

j!
P(B|P = 10, s = j)∑max(s−θ,0)

i=0
τ i

i!

× 10.

If s− θ > 0, then:

us≥1,s−θ>0(B|P = 1) =

1
2

+
∑s−θ

j=1
τ j

j!
× 1∑max(j−θ,0)

i=0
τi

i!
<5∑max(s−θ,0)

i=0
τ i

i!

× 10.

else if s− θ ≤ 0 then:

us≥1,s−θ≤0(B|P = 1) =
1

2
× 10.

Again, this expected profit depends on the value of τ and θ. The proba-
bility to buy for s ≥ 1 is therefore:

P(B|P = 1, s) = 1 if s− θ ≤ 0.

= 1 if s− θ > 0 and 4 >
s−θ∑
j=1

τ j

j!

(
1− 10× 1∑max(j−θ,0)

i=0
τi

i!
<5

)
Finally, given the distribution of players, the probability to buy condi-

tional on the price being P = 1 writes:

P(B|P = 1) = e−τ

(
1

2
+
∞∑
s=1

(
τ s

s!
× P(B|P = 1, s)

))
.

Probabilities are a function of τ and θ.
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4.4.2 No cap and θ > 0

Consider now an environment in which there is no cap on the initial price.
Suppose first that θ > 0, so that players believe that other players are less
sophisticated than they are.
Consider first the case of a trader observing a price P ≥ 100.

- If he is a level-0 player, he buys with probability P(B|P ≥ 100, s = 0) =
1
2
.

- If he is a level-s player, with 0 < s ≤ θ, he thinks that the next player
observing the price P ′ = 10P is a level-0 player with probability 1. Given
that he is not last with probability 3

7
, his expected profit writes:

u0<s≤θ(B|P ≥ 100) = 10× 3

7
× 1

2
,

which is strictly higher than his expected utility if he does not buy. His
probability to buy is therefore equal to 1.

- If he is a level-s player, with s > θ, he thinks that the next player
observing the price P ′ = 10P is a mixture of level-0, level-1 ... level-s − θ
players. Given that he is not last with probability 3

7
, his expected profit

writes:

us>θ(B|P ≥ 100) = 10× 3

7
×
∑s−θ

i=0 P(B|P ′ ≥ 100, s = i)× f(i)∑s−θ
j=0 f(j)

It can recursively be shown (starting with s = θ + 1) that since level-i
players for 0 < i ≤ θ buy when they observe P ′ = 10P , it is strictly profitable
for the level-s player to buy when he observes P ′ = P , for s > θ.

Consequently, whatever θ, the probability to buy conditional on P ≥ 100
writes:

P(B|P ≥ 100) = 1− e−τ 1

2

Since it is profitable for level-1 players to buy, it becomes profitable for more
sophisticated players to buy, thus only level-0 players do not buy.
Consider now the case of a trader observing P = 10 or P = 1. Since only
level-0 players do not buy when they observe P = 100 (P = 10 respectively),
it becomes even more profitable for all non level-0 players to buy when they
observe P = 10 (P = 1 respectively).

We thus conclude that the parameter θ is indeterminate. When there
is no cap, the OCH model with θ > 0 has the same predictions as the CH
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model: the probability to buy is constant whatever the observed price, and
equal to P(B|P ) = 1− e−τ 1

2
.

4.4.3 No cap and θ ≤ 0

Consider again an environment in which there is no cap on the initial price,
but suppose now that θ ≤ 0. In this case, players believe that other players
may be more sophisticated than they are. This case is slightly more complex,
as players have to form beliefs on the behavior of these more sophisticated
players. We restrict our analysis to the two following monotonic beliefs’
specifications:

1. Level-s player expects all level-s players with s′ ≥ 1 to buy when they
observe P ′ ≥ 100.

2. Level-s player thinks that there exists a threshold s∗� such that all level-
s’ players observing P ′ ≥ 100 buy if s′ ≤ s∗� and do not buy if s′ > s∗�.

Under the first specification of beliefs

Consider first the case of a trader observing P ≥ 100. Let us define:

ps = P(B|P ′ ≥ 100, s).

- If he is a level-0 player, he buys with probability P(B|P ≥ 100, s = 0) =
1
2
.

- If he is a level-s player, with s ≥ 1, he thinks that the next player
observing the price P ′ = 10P is a mixture of level-0, level-1 ... level-s − θ
players. Given that he is not last with probability 3

7
, his expected profit

writes:

us≥1(B|P ≥ 100) = 10× 3

7
×
∑s−θ

i=0 pi × f(i)∑s−θ
j=0 f(j)

This yields:

us(B|P ≥ 100) = 10× 3

7
×
∑s−θ

i=0 pi × f(i)∑s−θ
j=0 f(j)

= us+1(B|P ′ ≥ 100) +
(us+1(B|P ′ ≥ 100)− 30

7
ps+1−θ)f(s+ 1− θ)∑s−θ

j=0 f(j)
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and conversely:

us+1(B|P ≥ 100) = 10× 3

7
×
∑s+1−θ

i=0 pi × f(i)∑s+1−θ
j=0 f(j)

= us(B|P ′ ≥ 100)−
(us(B|P ′ ≥ 100)− 30

7
ps+1−θ)f(s+ 1− θ)∑s+1−θ

j=0 f(j)

Consider the first beliefs’ specification. Let us show that beliefs on actions
are consistent with actual choices, namely, that for s ≥ 1, if a level-s player
expects all level-s’ players (for s′ ≥ 1) to buy when they observe P ′ ≥ 100,
then it is profitable for him to buy.

Under these beliefs on actions, his expected profit if he buys writes:

us≥1(B|P ≥ 100) = 10× 3

7
×
f(0)1

2
+
∑s−θ

i=1 f(i)∑s−θ
j=0 f(j)

We consequently have:

us≥1(B|P ≥ 100) > u� ⇐⇒
8

7
+

s−θ∑
i=1

τ j

j!
> 0,

which always holds, whatever τ and θ. Under this specification, θ is thus
indeterminate and only level-0 player do not buy with probability 1

2
, so that:

P(B|P ≥ 100) = 1− 1

2
e−τ .

Consider now the case of a trader observing P = 10 or P = 1. Under the
first beliefs’ specification, the probability not to be last of this trader is equal
to 1. Consequently, if all level-s players with s ≥ 1 buy when they observe
P = 100, it is even more profitable to buy for the level-s player with s ≥ 1
when he observes P = 10. The same reasoning holds for the level-s player
with s ≥ 1 when he observes P = 1. This yields:

P(B|P = 10) = P(B|P = 1) = 1− 1

2
e−τ .

Under the second specification of beliefs
Consider first the case of a trader observing P ≥ 100. Consider the second

40



beliefs’ specification. Let us show that beliefs on actions are consistent with
actual choices, and let us find s∗�. If level-s player thinks that there exists a
threshold s∗� such that all level-s’ players observing P ′ ≥ 100 buy if s′ ≤ s∗�
and do not buy if s′ > s∗�, his expected profit if he buys writes:

us≥1(B|P ≥ 100) = 10× 3

7
×

1
2
f(0) +

∑min(s−θ,s∗�)

i=1 f(i)∑s−θ
j=0 f(j)

Let us first show that if ps∗�+1 = 0, then ps = 0 for all s ≥ s∗� + 1. In this
case, min(s− θ, s∗�) = s∗� and :

us+1(B|P ≥ 100) = us(B|P ′ ≥ 100)− us(B|P ′ ≥ 100)f(s+ 1− θ)∑s+1−θ
j=0 f(j)

,

so that the expected utility of level-(s+1) player if he buys is even lower than
the expected utility of buying of a level-s player. Consequently, if level-s
player does not buy, he does not buy either.

Let us now show that if ps∗� = 1, then ps = 1 for all s ≤ s∗�. If s ≤ s∗�+θ,
then we have shown that us≥1(B|P ≥ 100) > u�. Conversely, if s > s∗� + θ,
then min(s− θ, s∗�) = s∗� and:

us−1(B|P ≥ 100) = us(B|P ′ ≥ 100) +
us(B|P ′ ≥ 100)f(s− θ)∑s−1−θ

j=0 f(j)
,

Consequently, if level-s player buys, level-(s-1) player buys as well.
Let us finally show how to find the threshold s∗�. If it exists and is finite,

it must be such that:

us∗�(B|P ≥ 100) =
30

7
×

1
2

+
∑s∗�

i=1
τ i

i!∑s∗�−θ
j=0

τ j

j!

> 1

and

us∗�+1(B|P ≥ 100) =
30

7
×

1
2

+
∑s∗�

i=1
τ i

i!∑s∗�+1−θ
j=0

τ j

j!

< 1

Notice that if τ is sufficiently low, the second condition will never be satisfied,
so that s∗� → ∞. The latter case collapses to our first beliefs’ specification,
where θ is indeterminate.
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Finally, under this beliefs’ specification, if there exists a finite s∗�, then:

P (B|P ≥ 100) =
1

2
e−τ +

s∗�∑
j=1

τ j

j!
e−τ

Consider now the case of a trader observing P = 10. Level-s player’s expected
profit if he buys writes:

us≥1(B|P ≥ 100) = 10×
1
2
f(0) +

∑min(s−θ,s∗�)

i=1 f(i)∑s−θ
j=0 f(j)

Consequently, if level-s players buy when they observe P ′ = 100, it is even
more profitable for the level-s player to buy when he observes P = 10. Still,
there can be a higher threshold s∗∗� > s∗� such that level-s players observing
P = 10 do not buy if s > s∗∗� .

If this threshold exists and is finite, it must be such that:

us∗∗� (B|P = 10) > 1

and
us∗∗� +1(B|P = 10) < 1

Finally, under this beliefs’ specification, if there exists a finite s∗∗� , then:

P (B|P = 10) =
1

2
e−τ +

s∗∗�∑
j=1

τ j

j!
e−τ

Consider now the case of a trader observing P = 1. Level-s player’s expected
profit if he buys writes:

us≥1(B|P ≥ 100) = 10×
1
2
f(0) +

∑min(s−θ,s∗∗� )

i=1 f(i)∑s−θ
j=0 f(j)

Consequently, if level-s players buy when they observe P ′ = 10, it is even
more profitable for the level-s player to buy when he observes P = 1. Still,
there can be a higher threshold s∗∗∗� > s∗∗� such that level-s players observing
P = 1 do not buy if s > s∗∗∗� .
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If this threshold exists and is finite, it must be such that:

us∗∗∗� (B|P = 1) > 1

and
us∗∗∗� +1(B|P = 1) < 1

Finally, under this beliefs’ specification, if there exists a finite s∗∗∗� , then:

P (B|P = 1) =
1

2
e−τ +

s∗∗∗�∑
j=1

τ j

j!
e−τ

5 The Analogy-Based Expectation Equilib-

rium of Jehiel, 2005

According to the ABEE logic, agents use simplified representations of their
environment in order to form expectations. In particular, agents are assumed
to bundle nodes at which other agents make choices into analogy classes.
Agents then form correct beliefs concerning the average behavior within each
analogy class. Following Huck, Jehiel, and Rutter (2010), we consider that
agents apply noisy best-responses to their beliefs.

In our bubble game, two types of analogy classes arise naturally. On
the one hand, traders may use only one analogy class, assuming that other
traders’ behavior is the same across all potential prices. On the other hand,
traders may use two analogy classes: one to form beliefs regarding the be-
havior of traders who are sure not to be last in the market sequence (Class
I), the other to form beliefs regarding the behavior of the remaining traders
(Class II that thus includes traders who think they may be last or who know
they are last).

In this section, we derive the conditional probabilities to buy for risk-
neutral traders observing prices of P ∈ {1, 10...} in the ABEE model of
Jehiel (2005). Let ui,B be the expected payoff of risk-neutral player observing
P = Pi if he buys, u∅ his expected payoff if he does not buy. In the quantal
response model, the probability with which the trader buys conditional on
observing P writes:

P (B|P = Pi) =
eΛui,B

eΛui,B + eΛui,∅
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5.1 K=1

Consider first an environment in which there is a cap K = 1 on the initial
price. There are three possible prices. Given the probability distribution of
the first price, we have:

P (I observe 1) =
1

3

P (I observe 10) =
1

3

P (I observe 100) =
1

3

Let p1, p2, and p3 denote the actual probability that a trader buys after
observing prices equal to 1, 10, and 100, respectively. Let P(B|P = 1),
P(B|P = 10), and P(B|P = 100) be the corresponding probabilities as
(mis)perceived by traders using analogy classes. In the one-class ABEE,
players bundle probabilities to buy so that:

P(B|P = 1) = P(B|P = 10) = P(B|P = 100) =
1
3
p1 + 1

3
p2 + 1

3
p3

1
3

+ 1
3

+ 1
3

=
p1 + p2 + p3

3
,

while in the two-class ABEE,

Class II : P(B|P = 100) = p3

Class I : P(B|P = 1) = P(B|P = 10) =
1
3
p1 + 1

3
p2

1
3

+ 1
3

=
p1 + p2

2
.

5.1.1 K=1, 1 class ABEE

Consider the case where there exists only one analogy class.
Consider first the case of a trader observing a price P = 100. This trader
perfectly infers from this observation that he is third in the sequence, that
is, q(1, 100) = 0. Consequently, his expected payoffs if he buys writes:

u3,B = 0,

so that his probability to buy is:

p3 =
1

1 + eΛ
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Consider now the case of a trader observing a price P = 10. Given that he
knows that he is second, that is, q(1, 10) = 1, his expected payoffs if he buys
writes:

u2,B = 10× P(B|P = 100) = 10(
p1 + p2 + p3

3
)

The probability to buy is therefore:

p2 =
eΛ

10(p1+p2+p3)
3

eΛ
10(p1+p2+p3)

3 + eΛ

Consider finally the case of a trader observing a price P = 1. Given that
he knows that he is first, that is, q(1, 1) = 1, his expected payoffs if he buys
writes:

u1,B = 10× P(B|P = 10) =
10

3
(p1 + p2 + p3)

The probability to buy is therefore:

p1 = p2

Consequently, in equilibrium:

p3 =
1

1 + eΛ

p2 =
eΛ

10( 1
1+eΛ

+2p2)

3

eΛ
10( 1

1+eΛ
+2p2)

3 + eΛ

p1 = p2

Solving this system enables us to find, for each j, pj as a function of λ.

5.1.2 K=1, 2 classes (1 10)(100)

Consider now the case where there exists two analogy classes I and II.
Consider first the case of a trader observing a price P = 100. Given that
q(1, 100) = 0, his expected payoffs for buying writes:

u3,B = 0

The probability to buy is therefore:

p3 =
1

1 + eΛ
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Consider now the case of a trader observing a price P = 10. Given that
q(1, 10) = 1, his expected payoffs for buying write:

u2,B = 10× P(B|P = 100) = 10p3

The probability to buy is therefore:

p2 =
eΛ10p3

eΛ10p3 + eΛ

Consider finally the case of a trader observing a price P = 1. Given that
q(1, 1) = 1, his expected payoffs for buying writes:

u1,B = 10× P(B|P = 10) = 10(
p1 + p2

2
)

The probability to buy is therefore:

p1 =
eΛ5(p1+p2)

eΛ5(p1+p2) + eΛ

Consequently, in equilibrium:

p3 =
1

1 + eΛ

p2 =
eΛ10p3

eΛ10p3 + eΛ

p1 =
e5Λ(p1+p2)

e5Λ(p1+p2) + eΛ

5.2 K=100

Consider now an environment in which there is a cap K = 100 on the initial
price. There are five possible prices. Given the probability distribution of
the first price, we have:

P(I observe 1) =
1

6

P(I observe 10) =
1

4

P(I observe 100) =
1

3

P(I observe 1000) =
1

6

P(I observe 10000) =
1

12
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Besides, recall that:

q(100, 1) = q(100, 10) = 1

q(100, 100) = q(100, 1000) =
1

2
q(100, 10000) = 0

Let p1, p2, p3, p4 and p5 denote the actual probability that a trader buys
after observing prices equal to 1, 10, 100, 1,000 and 10,000 respectively. Let
P(B|P = 1), P(B|P = 10), Pr(B|P = 100), P(B|P = 1000), and P(B|P =
10000) be the corresponding probabilities as (mis)perceived by traders using
analogy classes. In the one-class ABEE, players bundle probabilities to buy
so that:

P(B|P ) =
1
6
p1 + 1

4
p2 + 1

3
p3 + 1

6
p4 + 1

12
p5

1
6

+ 1
4

+ 1
3

+ 1
6

+ 1
12

=
2p1 + 3p2 + 4p3 + 2p4 + p5

12
,∀P

while in the two-class ABEE,

Class II : P(B|P = 100, 1000, 10000) =
1
3
p3 + 1

6
p4 + 1

12
p5

1
3

+ 1
6

+ 1
12

=
4p3 + 2p4 + p5

7

Class I : P(B|P = 1, 10) =
1
6
p1 + 1

4
p2

1
6

+ 1
4

=
2p1 + 3p2

5
.

5.2.1 K=100, 1 class

Consider the case where there exists only one analogy class.
Consider first the case of a trader observing a price P = 10, 000. Given that
q(100, 10000) = 0, his expected payoffs for buying writes:

u5,B = 0

The probability to buy is therefore:

p5 =
1

1 + eΛ

Consider now the case of a trader observing a price P = 1, 000. Given that
q(100, 1000) = 1

2
, his expected payoffs for buying writes:

u4,B =
1

2
× 10× P(B|P = 10, 000) = 5

2p1 + 3p2 + 4p3 + 2p4 + p5

12
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The probability to buy is therefore:

p4 = P (B|P = 1, 000) =
eΛ

5(2p1+3p2+4p3+2p4+p5)
12

eΛ
5(2p1+3p2+4p3+2p4+p5)

12 + eΛ

Consider now the case of a trader observing a price P = 100. Given that
q(100, 100) = 1

2
, his expected payoffs for buying writes:

u3,B =
1

2
× 10× P(B|P = 1, 000) = 5

2p1 + 3p2 + 4p3 + 2p4 + p5

12
The probability to buy is therefore:

p3 = p4

Consider now the case of a trader observing a price P = 10. Given that
q(100, 10) = 1, his expected payoffs for buying writes:

u2,B = 1× 10× P(B|P = 100) = 10
2p1 + 3p2 + 4p3 + 2p4 + p5

12
The probability to buy is therefore:

p2 =
eΛ

5(2p1+3p2+4p3+2p4+p5)
6

eΛ
5(2p1+3p2+4p3+2p4+p5)

6 + eΛ

Consider finally the case of a trader observing a price P = 1. Given that
q(100, 1) = 1, his expected payoffs for buying writes:

u1,B = 10× P(B|P = 10) = 10
2p1 + 3p2 + 4p3 + 2p4 + p5

12
The probability to buy is therefore:

p1 = p2

Consequently, in equilibrium:

p5 =
1

1 + eΛ

p4 =
eΛ

5(5p2+6p4+ 1
1+eΛ

)

12

eΛ
5(5p2+6p4+ 1

1+eΛ
)

12 + eΛ

p3 = p4

p2 =
eΛ

5(5p2+6p4+ 1
1+eΛ

)

6

eΛ
5(5p2+6p4+ 1

1+eΛ
)

6 + eΛ

p1 = p2
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5.2.2 K=100, 2 classes (1 10) (100 1,000 10,000)

Consider now the case where there exists two analogy classes, namely (1 10)
and (100 1,000 10,000).
Consider first the case of a trader observing a price P = 10, 000. Given that
q(100, 10000) = 0, his expected payoffs for buying writes:

u5,B = 0

His probability to buy is therefore:

p5 =
1

1 + eΛ

Consider now the case of a trader observing a price P = 1, 000. Given that
q(100, 1000) = 1

2
, his expected payoffs for buying writes:

u4,B =
1

2
× 10× P(B|P = 10, 000) = 5

4p3 + 2p4 + p5

7

The probability to buy is therefore:

p4 = P (B|P = 1, 000) =
eΛ

5(4p3+2p4+p5)
7

eΛ
5(4p3+2p4+p5)

7 + eΛ

Consider now the case of a trader observing a price P = 100. Given that
q(100, 100) = 1

2
, his expected payoffs for buying writes:

u3,B =
1

2
× 10× P(B|P = 1, 000) = 5

4p3 + 2p4 + p5

7

The probability to buy is therefore:

p3 = p4

Consider now the case of a trader observing a price P = 10. Given that
q(100, 10) = 1, his expected payoffs for buying writes:

u2,B = 10× P(B|P = 100) = 10
4p3 + 2p4 + p5

7

The probability to buy is therefore:

p2 =
eΛ

10(4p3+2p4+p5)
7

eΛ
10(4p3+2p4+p5)

7 + eΛ
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Consider finally the case of a trader observing a price P = 1. His expected
payoffs for buying and not buying respectively write:

u1,B = 10× P(B|P = 10) = 10
2p1 + 3p2

5

The probability to buy is therefore:

p1 = P (B|P = 1) =
eΛ(4p1+6p2)

eΛ(4p1+6p2) + eΛ

Consequently, in equilibrium:

p5 =
1

1 + eΛ

p4 =
eΛ

5(6p4+ 1
1+eΛ

)

7

eΛ
5(6p4+ 1

1+eΛ
)

7 + eΛ

p3 = p4

p2 =
eΛ

10(6p4+ 1
1+eΛ

)

7

eΛ
10(6p4+ 1

1+eΛ
)

7 + eΛ

p1 =
eΛ(4p1+6p2)

eΛ(4p1+6p2) + eΛ

5.3 K=10,000

Consider now an environment in which there is a cap K = 10000 on the initial
price. There are seven possible prices. Given the probability distribution of
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the first price, we have:

P(I observe 1) =
1

6

P(I observe 10) =
1

4

P(I observe 100) =
7

24

P(I observe 1000) =
7

48

P(I observe 10, 000) =
1

12

P(I observe 100, 000) =
1

24

P(I observe 1, 000, 000) =
1

48

Besides, recall that:

q(10000, 1) = q(10000, 10) = 1

q(10000, 100) = q(10000, 1000) =
3

7

q(10000, 10000) = q(10000, 100000) =
1

2
q(10000, 1000000) = 0

Let p1, p2, p3, p4, p5, p6 and p7 denote the actual probability that a
trader buys after observing prices equal to 1, 10, 100, 1,000, 10,000, 100,000
and 1,000,000 respectively. Let P(B|P = 1), P(B|P = 10), P(B|P = 100),
P(B|P = 1000), P(B|P = 10000), Pr(B|P = 100000) and P(B|P = 1000000)
be the corresponding probabilities as (mis)perceived by traders using analogy
classes. In the one-class ABEE, players bundle probabilities to buy so that:

P(B|P ) =
1
6
p1 + 1

4
p2 + 7

24
p3 + 7

48
p4 + 1

12
p5 + 1

24
p6 + 1

48
p7

1
6

+ 1
4

+ 7
24

+ 7
48

+ 1
12

+ 1
24

+ 1
48

=
8p1 + 12p2 + 14p3 + 7p4 + 4p5 + 2p6 + p7

48
,∀P

while in the two-class ABEE,
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Class II :

P(B|P ≥ 100) =
7
24
p3 + 7

48
p4 + 1

12
p5 + 1

24
p6 + 1

48
p7

7
24

+ 7
48

+ 1
12

+ 1
24

+ 1
48

=
14p3 + 7p4 + 4p5 + 2p6 + p7

28

Class I : P(B|P = 1, 10) =
1
6
p1 + 1

4
p2

1
6

+ 1
4

=
2p1 + 3p2

5
.

5.3.1 K=10,000, 1 class

Consider the case where there exists only one analogy class.
Consider first the case of a trader observing a price P = 1, 000, 000. Given
that q(10000, 1000000) = 0, his expected payoffs for buying writes:

u7,B = 0

u∅ = 1

The probability to buy is therefore:

p7 =
1

1 + eΛ

Consider now the case of a trader observing a price P = 100, 000. His
expected payoffs for buying writes:

u6,B =
1

2
×10×P(B|P = 1, 000, 000) = 5(

8p1 + 12p2 + 14p3 + 7p4 + 4p5 + 2p6 + p7

48
)

The probability to buy is therefore:

p6 =
eΛ

5(8p1+12p2+14p3+7p4+4p5+2p6+p7)
48

eΛ
5(8p1+12p2+14p3+7p4+4p5+2p6+p7)

48 + eΛ

Consider now the case of a trader observing a price P = 10, 000. His expected
payoffs for buying writes:

u5,B =
1

2
× 10× P(B|P = 100, 000) = u6,B

The probability to buy is therefore:

p5 = p6
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Consider now the case of a trader observing a price P = 1, 000. His expected
payoffs for buying writes:

u4,B =
3

7
× 10× P(B|P = 10, 000)

= 5(
8p1 + 12p2 + 14p3 + 7p4 + 4p5 + 2p6 + p7

56
)

The probability to buy is therefore:

p4 =
eΛ

5(8p1+12p2+14p3+7p4+4p5+2p6+p7)
56

eΛ
5(8p1+12p2+14p3+7p4+4p5+2p6+p7)

56 + eΛ

Consider now the case of a trader observing a price P = 100. His expected
payoffs for buying writes:

u3,B =
3

7
× 10× P(B|P = 1, 000) = u4,B

The probability to buy is therefore:

p3 = p4

Consider now the case of a trader observing a price P = 10. His expected
payoffs for buying writes:

u2,B = 1×10×P(B|P = 1, 000) = 10
8p1 + 12p2 + 14p3 + 7p4 + 4p5 + 2p6 + p7

48

The probability to buy is therefore:

p2 =
eΛ

5(8p1+12p2+14p3+7p4+4p5+2p6+p7)
24

eΛ
5(8p1+12p2+14p3+7p4+4p5+2p6+p7)

24 + eΛ

Consider finally the case of a trader observing a price P = 1. His expected
payoffs for buying writes:

u1,B = 10× P(B|P = 10) = u2,B

The probability to buy is therefore:

p1 = p2
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Consequently, in equilibrium:

p7 =
1

1 + eΛ

p6 =
eΛ

5(20p2+21p4+6p6+ 1
1+eΛ

)

48

eΛ
5(20p2+21p4+6p6+ 1

1+eΛ
)

48 + eΛ

p5 = p6

p4 =
eλ

5(20p2+21p4+6p6+ 1
1+eΛ

)

56

eλ
5(20p2+21p4+6p6+ 1

1+eΛ
)

56 + eλ
p3 = p4

p2 =
eΛ

5(20p2+21p4+6p6+ 1
1+eΛ

)

24

eΛ
5(20p2+21p4+6p6+ 1

1+eΛ
)

24 + eΛ

p1 = p2

5.3.2 K=10,000, 2 classes (1 10) (100 1,000 10,000 100,000 1,000,000)

Consider the case where there exist two analogy classes.
Consider first the case of a trader observing a price P = 1, 000, 000. His
expected payoffs for buying writes:

u7,B = 0

The probability to buy is therefore:

p7 =
1

1 + eΛ

Consider now the case of a trader observing a price P = 100, 000. His
expected payoffs for buying writes:

u6,B =
1

2
× 10× P(B|P = 1, 000, 000) = 5× (

14p3 + 7p4 + 4p5 + 2p6 + p7

28
)

The probability to buy is therefore:

p6 =
eΛ

5(14p3+7p4+4p5+2p6+p7)
28

eΛ
5(14p3+7p4+4p5+2p6+p7)

28 + eΛ
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Consider now the case of a trader observing a price P = 10, 000. His expected
payoffs for buying writes:

u5,B =
1

2
× 10× P(B|P = 100, 000) = u6,B

The probability to buy is therefore:

p5 = p6

Consider now the case of a trader observing a price P = 1, 000. His expected
payoffs for buying and not buying respectively write:

u4,B =
3

7
× 10× P(B|P = 10, 000) =

30

7
× 14p3 + 7p4 + 4p5 + 2p6 + p7

28

The probability to buy is therefore:

p4 =
eΛ

15(14p3+7p4+4p5+2p6+p7)
98

eΛ
15(14p3+7p4+4p5+2p6+p7)

98 + eΛ

Consider now the case of a trader observing a price P = 100. His expected
payoffs for buying and not buying respectively write:

u3,B =
3

7
× 10× P(B|P = 1, 000) = u4,B

The probability to buy is therefore:

p3 = p4

Consider now the case of a trader observing a price P = 10. His expected
payoffs for buying and not buying respectively write:

u2,B = 1× 10× P(B|P = 100) = 10× 14p3 + 7p4 + 4p5 + 2p6 + p7

28

The probability to buy is therefore:

p2 =
eΛ

5(14p3+7p4+4p5+2p6+p7)
14

eΛ
5(14p3+7p4+4p5+2p6+p7)

14 + eΛ
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Consider finally the case of a trader observing a price P = 1. His expected
payoffs for buying and not buying respectively write:

u1,B = 10× P(B|P = 10) = 1× 10× 2p1 + 3p2

5

The probability to buy is therefore:

p1 =
e2Λ(2p1+3p2)

e2Λ(2p1+3p2) + eΛ

Consequently, in equilibrium:

p7 =
1

1 + eΛ

p6 =
eΛ

5(21p4+6p6+p7)
28

eΛ
5(21p4+6p6+p7)

28 + eΛ

p5 = p6

p4 =
eΛ

15(21p4+6p6+p7)
98

eΛ
15(21p4+6p6+p7)

98 + eΛ

p3 = p4

p2 = p2 =
eΛ

5(14p3+7p4+4p5+2p6+p7)
14

eΛ
5(14p3+7p4+4p5+2p6+p7)

14 + eΛ

p1 =
e2Λ(2p1+3p2)

e2Λ(2p1+3p2) + eΛ

5.4 No cap

Consider now an environment in which there is no cap on the initial price.
There is an infinity of possible prices. Given the probability distribution of
the first price, we have:

P(I observe P = 1) =
1

6

P(I observe P = 10) =
1

4

P(I observe P = 10n, n ≥ 2) =
1

3

(
(
1

2
)n−1 + (

1

2
)n + (

1

2
)n+1

)
= (

1

2
)n−1 7

12
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Besides, recall that:

q(., 1) = q(., 10) = 1

q(., P ≥ 100) = q(10000, 1000) =
3

7

Let p1, p2, and p3 denote the actual probability that a trader buys after
observing prices equal to 1, 10, P ≥ 100 respectively. Let P(B|P = 1),
P(B|P = 10), and P(B|P ≥ 100) be the corresponding probabilities as
(mis)perceived by traders using analogy classes. In the one-class ABEE,
players bundle probabilities to buy so that:

P(B|P ) =
1
6
p1 + 1

4
p2 +

(
1− 1

6
− 1

4

)
p3

1
6

+ 1
4

+
(
1− 1

6
− 1

4

) =
2p1 + 3p2 + 7p3

12
,∀P

while in the two-class ABEE,

Class II : P(B|P ≥ 100) =

(
1− 1

6
− 1

4

)
p3

1− 1
6
− 1

4

= p3

Class I : P(B|P = 1, 10) =
1
6
p1 + 1

4
p2

1
6

+ 1
4

=
2p1 + 3p2

5
.

5.4.1 No cap, 1 class

Consider the case where there exists only one analogy class.
Consider first the case of a trader observing a price P ≥ 100. His expected
payoffs for buying and not buying respectively write:

u3+,B =
3

7
× 10× P(B|P ≥ 100) =

30

7
× 2p1 + 3p2 + 7p3

12

The probability to buy is therefore

p3 =
eΛ× 5

14
(2p1+3p2+7p3)

eΛ× 5
14
×(2p1+3p2+7p3) + eΛ

Consider now the case of a trader observing a price P = 10. His expected
payoffs for buying and not buying respectively write:

u2,B = 10× P(B|P ≥ 100) = 10× 2p1 + 3p2 + 7p3

12
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The probability to buy is therefore

p2 =
eΛ 5

6
(2p1+3p2+7p3)

eΛ 5
6

(2p1+3p2+7p3) + eΛ

Consider finally the case of a trader observing a price P = 1. His expected
payoffs for buying and not buying respectively write:

u1,B = 10× P(B|P = 10) = u2,B

The probability to buy is therefore

p1 = p2

Consequently, in equilibrium:

p3 =
eΛ× 5

14
(5p2+7p3)

eΛ× 5
14
×(5p2+7p3) + eΛ

p2 =
eΛ 5

6
(5p2+7p3)

eΛ 5
6

(5p2+7p3) + eΛ

p1 = p2

5.4.2 No cap, 2 classes (1 10)(all others)

Consider now the case where there exist two analogy classes.
Consider first the case of a trader observing a price P ≥ 100. His expected
payoffs for buying writes:

u3+,B =
3

7
× 10× P(B|P ≥ 100) =

30

7
× p3

The probability to buy is therefore :

p3 =
eΛ× 30

7
×p3

eΛ× 30
7
×p3 + eΛ

Consider now the case of a trader observing a price P = 10. His expected
payoffs for buying writes:

u2,B = 10× P(B|P ≥ 100) = 10× p3
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The probability to buy is therefore:

p2 =
eΛ10×p3

eΛ10×p3 + eΛ

Consider finally the case of a trader observing a price P = 1. His expected
payoffs for buying writes:

u1,B = 10× P(B|P = 10) = 10× 2p1 + 3p2

5

The probability to buy is therefore

p1 =
eΛ(4p1+6p2)

eΛ(4p1+6p2) + eΛ

Consequently, in equilibrium:

p3 =
eΛ× 30

7
×p3

eΛ× 30
7
×p3 + eΛ

p2 =
eΛ10×p3

eΛ10×p3 + eΛ

p1 =
eΛ(4p1+6p2)

eΛ(4p1+6p2) + eΛ

5.5 An extension of the Analogy-Based Expectations
Equilibrium model with Heterogeneous Quantal
Response

We now extend the ABEE model with QR to an ABEE model with Hetero-
geneous Quantal Response (below HABEE). We again consider the two types
of analogy-based expectations equilibria, the one in which there is only one
analogy class, and the one in which there are two classes, Class I including
traders who are sure not to be last in the market sequence, and Class II
including the remaining traders.

We derive the conditional probabilities to buy for risk-neutral traders
observing prices of P ∈ {1, 10...} in this HABEE model. Let uk,B be the
expected payoff of risk-neutral player observing P = Pk if he buys, u∅ his
expected payoff if he does not buy.
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In the heterogeneous quantal response model, the probability with which
the trader buys conditional on observing P writes:

Pi (B|P = Pk) =
eλiuk,B

eλiuk,B + eλiu∅
,

where λi is drawn from a commonly known distribution, Fi(λi). As in the
HQRE model, we assume that the distribution Fi(λi) is common knowledge,
but traders’ type, λi , is private information known only to i. We assume
that Fi is uniform [Λ − ε

2
,Λ + ε

2
]. For computational reasons, we discretize

this interval with a tick size t, therefore f(λi) = 1
ε
t
+1

= f , and there exist
ε
t

+ 1 types of traders.
Let pik denote the actual probability that a type i trader buys after ob-

serving prices equal to P = 10k. Let pk denote the average probability that
a trader buys after observing prices equal to P = 10k, and P(B|P = 10k)
the corresponding probabilities as (mis)perceived by traders using analogy
classes.

Trader i’s utility if he buys depends on the price P = Pk he observes but
not on his type:

uk,B = 10× q(K, 10k)P(B|P = 10k)

Consequently, the probability to buy of a type i trader writes

pik =
eλi10×q(K,10k)P(B|P=10k)

eλi10×q(K,10k)P(B|P=10k) + eλi

which yields:

pk =

Λ+ ε
2∑

λ=Λ− ε
2

pikP(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλ10×q(K,10k)P(B|P=10k)

eλ10×q(K,10k)P(B|P=10k) + eλi

Probabilities to buy at each level of price P = 10k are therefore the solu-
tion to a more complex system of equations than in the ABEE model without
heterogeneity since we now have to compute a sum of exponential functions
when traders’ types are heterogeneous. However the link between the ABEE
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with QR and the ABEE with HQR is straightforward. To illustrate this, we
present below as an example the case where K = 1.

Consider an environment in which there is a cap K = 1 on the initial
price. There are three possible prices. Recall that given the probability
distribution of the first price, we have:

P (I observe 1) =
1

3

P (I observe 10) =
1

3

P (I observe 100) =
1

3

In the one-class ABEE, players bundle probabilities to buy so that:

P(B|P = 1) = P(B|P = 10) = P(B|P = 100) =
1
3
p1 + 1

3
p2 + 1

3
p3

1
3

+ 1
3

+ 1
3

=
p1 + p2 + p3

3
,

while in the two-class ABEE,

Class II : P(B|P = 100) = p3

Class I : P(B|P = 1) = P(B|P = 10) =
1
3
p1 + 1

3
p2

1
3

+ 1
3

=
p1 + p2

2
.

5.5.1 K=1, 1 class HABEE

Consider the case where there exists only one analogy class.
Consider first the case of trader i observing a price P = 100. This trader
perfectly infers from this observation that he is third in the sequence, that
is, q(1, 100) = 0. Consequently, his expected payoffs if he buys writes:

u3,B = 0,

so that his probability to buy is:

pi3 =
1

1 + eλi
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Given the distribution of type-i players, the average probability to buy
is:

p3 =

Λ+ ε
2∑

λ=Λ− ε
2

pi3P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ

Comparing with the model ABEE with QR, recall that we previously had
obtained:

p3 =
1

1 + eλ

Consider now the case of trader i observing a price P = 10. Given that he
knows that he is second, that is, q(1, 10) = 1, his expected payoffs if he buys
writes:

u2,B = 10× P(B|P = 100) = 10(
p1 + p2 + p3

3
)

His probability to buy is therefore:

pi2 =
eλi

10(p1+p2+p3)
3

eλi
10(p1+p2+p3)

3 + eλi

Given the distribution of type-i players, the average probability to buy
is:

p2 =

Λ+ ε
2∑

λ=Λ− ε
2

pi2P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλ
10(p1+p2+p3)

3

eλ
10(p1+p2+p3)

3 + eλ

Comparing with the model ABEE with QR, recall that we previously had
obtained:

p2 =
eλ

10(p1+p2+p3)
3

eλ
10(p1+p2+p3)

3 + eλ
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Consider finally the case of trader i observing a price P = 1. Given that he
knows that he is first, that is, q(1, 1) = 1, his expected payoffs if he buys
writes:

u1,B = 10× P(B|P = 10) =
10

3
(p1 + p2 + p3)

The probability to buy is therefore:

pi1 = pi2

Given the distribution of type-i players, the average probability to buy
is:

p1 = p2

Consequently, in equilibrium:

p3 = f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ

p2 = f

Λ+ ε
2∑

λ=Λ− ε
2

eλ
10(2p2+p3)

3

eλ
10(2p2+p3)

3 + eλ

p1 = p2

Solving this system enables us to find, for each j, pj as a function of Λ and
ε.

Comparing with the model ABEE with QR, recall that we previously had
obtained:

p3 =
1

1 + eλ

p2 =
eλ

10(2p2+p3)
3

eλ
10(2p2+p3)

3 + eλ
p1 = p2

5.5.2 K=1, HABEE with 2 classes (1 10)(100)

Consider now the case where there exists two analogy classes I and II.
Consider first the case of trader i observing a price P = 100. Given that
q(1, 100) = 0, his expected payoffs for buying writes:

u3,B = 0
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His probability to buy is therefore:

pi3 =
1

1 + eλi

Given the distribution of type-i players, the average probability to buy
is:

p3 =

Λ+ ε
2∑

λ=Λ− ε
2

pi3P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ

Consider now the case of trader i observing a price P = 10. Given that
q(1, 10) = 1, his expected payoffs for buying write:

u2,B = 10× P(B|P = 100) = 10p3

The probability to buy is therefore:

pi2 =
eλi10p3

eλi10p3 + eλi

Given the distribution of type-i players, the average probability to buy
is:

p2 =

Λ+ ε
2∑

λ=Λ− ε
2

pi2P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλ10p3

eλ10p3 + eλ

Consider finally the case of trader i observing a price P = 1. Given that
q(1, 1) = 1, his expected payoffs for buying writes:

u1,B = 10× P(B|P = 10) = 10(
p1 + p2

2
)
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The probability to buy is therefore:

pi1 =
eλi5(p1+p2)

eλi5(p1+p2) + eλi

Given the distribution of type-i players, the average probability to buy
is:

p1 =

Λ+ ε
2∑

λ=Λ− ε
2

pi1P(λi = λ)

= f

Λ+ ε
2∑

λ=Λ− ε
2

eλ5(p1+p2)

eλ5(p1+p2) + eλ

Consequently, in equilibrium:

p3 = f

Λ+ ε
2∑

λ=Λ− ε
2

1

1 + eλ

p2 = f

Λ+ ε
2∑

λ=Λ− ε
2

eλ10p3

eλ10p3 + eλ

p1 = f

Λ+ ε
2∑

λ=Λ− ε
2

e5λ(p1+p2)

e5λ(p1+p2) + eλ

Comparing with the model ABEE with QR, recall that we previously had
obtained:

p3 =
1

1 + eλ

p2 =
eλ10p3

eλ10p3 + eλ

p1 =
e5λ(p1+p2)

e5λ(p1+p2) + eλ

Consequently, it is straightforward to extend the ABEE model to account
for heterogeneity.
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6 Market behavior

To complement the individual behavior analysis provided in the main paper,
we study the frequency as well as the magnitude of bubbles. The frequency
of bubbles is defined as the proportion of replications in which the first trader
accepts to buy the asset. The magnitude of bubbles is referred to as large if
all three subjects accept to buy the asset, medium if the first two subjects
accept, and small if only the first subject accepts. Figure 1 presents the
results per treatment.

Figure 1: Probability to observe bubbles, depending on the cap on the initial
price

First, Figure 1 shows that there are bubbles in an environment where
backward induction is supposed to shut down speculation, namely when there
exists a price cap. This is in line with the previous experimental literature
cited in the introduction. We observe large bubbles even in situations where
the existence of a cap enables some subjects to perfectly infer that they are
last in the market sequence. A potential explanation is related to bounded
rationality.8 It is indeed possible that some subjects make mistakes and buy,
in particular (but not only) when being offered a price of 100K. Second,
we also observe bubbles when there is no price cap, that is, when there

8An alternative explanation could be related to social preferences. However, extreme
altruism would be required in order for a subject to be willing to not earn anything in
order to let other subjects gain. We therefore do not focus on this interpretation.
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exists a bubble equilibrium. However, bubbles are not forming 100% of the
time. This indicates that traders fail to perfectly coordinate on the bubble
equilibrium. This might be due to the risk of trading with an agent who is
too risk averse to speculate. Another interpretation is that the (potential)
existence of irrational traders (who may not buy when it would be rational)
increases the risk of entering the bubble for rational traders. Finally, on
Figure 1, it seems that bubbles form slightly more often when there is no
price cap than when there is one, and that large bubbles are more frequent
when there is a cap at K = 10, 000 than when there is no cap. Section 5
of the main paper sheds more light on these aspects by studying individual
behavior and by offering formal statistical tests. 9

9In fact, the likelihood of large bubbles is not different between the treatment with a
cap at K = 10, 000 and the one with no cap (A Wilcoxon rank sum test indeed indicates
a p-value of 0.307). On the contrary, subjects are more likely to speculate when bubbles
are rational, specifically when they are sure not to be last.
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7 Estimation of HABEE and OCH

This section shows the estimation results of the HABEE model and of the
OCH model. It extends the analysis of individual behavior presented in
subsection 5.2 in the main paper. The HABEE model nests the ABEE model.
The OCH model is an extension of the CH model, in which the parameter θ
measures overconfidence.

For each model, we estimate the parameters of interest using maximum
likelihood methods for the entire data set as well as for each treatment sep-
arately. Confidence intervals are computed using a bootstrapping procedure
based on 10,000 observations. We then choose the 2.5 and 97.5 percentile
points values to construct 95% confidence intervals.

Table I reports our estimation results.

Table 1: Goodness of fit of HABEE with 1 class, HABEE with 2 classes, and
OCH

The results of the OCH estimations are as follows.10 First, subjects tend
to be pretty overconfident. We illustrate the degree of overconfidence by the

10As shown in Section 4, in some circumstances, the parameter θ is not identifiable. As
can be seen in Table I, this occurs when we estimate OCH on the no cap treatment data
and on the entire data. This also happens in our bootstrapping simulations, so we also
indicate the percentage of simulations in which this is the case.
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difference, divided by τ , between τ and the average of the perceived average
sophistication. This measures the extent to which agents underestimate the
actual average level of sophistication in the population of players. Given our
estimations, the degree of overconfidence is equal to 9% for the treatment
with K = 1 (the estimated values are θ = −2 and τ = 1.7), 49% for the
treatment with K = 100 (the estimated values are θ = 1 and τ = 3.9),
36% for the treatment with K = 10, 000 (the estimated values are θ = 0
and τ = 1.0). Second, a log-likelihood ratio test shows that the OCH model
does not significantly improve (p-value is 0.296 when pooling the estimates
done on the sessions in which θ is identified, that is for K = 1, K = 100, and
K = 10, 000) the fit relative to the CH model (that also features overconfident
agents since it corresponds to OCH with θ = 1).

The results of the HABEE estimations are as follows. First, adding het-
erogeneity does not change our result on the comparison of the ABEE models
with one and two classes. Indeed, a likelihood test for non-nested models con-
firms that the HABEE model with two classes performs significantly better
than the HABEE model with one class (p-value of 0.008). Second, adding
heterogeneity increases the log-likelihood but this increase is not statistically
significant. A Vuong test for nested models indicates that the HABEE model
with 1 class (resp. 2 classes) does not significantly perform better that the
corresponding ABEE model with a p-value of 0.635 (resp. 0.671). Third, the
parameter ε is very small in all sessions (between 0 and 0.4). As 0 lies in the
95% confidence interval when considering the estimations by treatment, we
cannot reject the hypothesis that ε is equal to zero. The estimates of Λ are
very similar to that of λ in the ABEE models.11

11As the individual λi belong to the interval [Λ− ε
2 ,Λ + ε

2 ], it needs to be the case that
Λ ≥ ε

2 . Consequently, even if our estimation increments possible values of Λ by a tick of
0.1, the estimate may not be a multiple of 0.1.
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8 Robustness: learning and professional ex-

perience

This section extends our analysis to study the effect of learning and profes-
sional experience. The first subsection reports an experiment where subjects
play five replications of the game. The second subsection reports an experi-
ment run with Executive MBA students at the London Business School.

8.1 Learning

In order to study how learning affects bubble formation, we run exactly the
same experiment as in the main paper except for the number of replications.
Subjects are now playing five replications in a stranger design (and this is
common knowledge): subjects do not know with whom they are playing and
it is very unlikely that they will be playing again with the same subjects.
The experiment includes 66 subjects from the first year of Master in Finance
at the University of Toulouse. This pool of students is very similar to the
baseline experiment pool. There are four sessions with 15 or 18 subjects.
Each subject participates in only one session and receives a 5-euro show-up
fee. The minimum, median, maximum, and average gains in this experiment
are respectively 1, 13, 41, and 16 euros (not including the show-up fee).

This experimental design is summarized in Table II.

Session # Replications # Subjects cap on initial price, K Equilibrium
13 5 15 1 no-bubble
14 5 18 100 no-bubble
15 5 15 10,000 no-bubble
16 5 18 ∞ no-bubble or bubble

Table 2: Experimental design of the 5-period experiments

We start by constructing a data set that includes the baseline (one-shot)
experiment and the first replication of the learning experiment. We thus
have 300 observations. We run a logit regression capturing the effects of the
number of steps of iterated reasoning, the degree of risk aversion and the price
as in the baseline experiment, dropping the dummies capturing the cap effect
as they were not significant. In contrast with the baseline regression though,
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we do not interact the dummies that capture the number of steps with the
dummies that capture the informational content of prices (namely, whether
there are sure not to be last, or not). This difference is motivated by the fact
that at the last period, 100% of the 24 subjects who know they are not last
and use more than three steps of iterated reasoning always buy, which would
prevent us to capture the impact of the last period on the probability to
buy on Variable 4 of the baseline regression. We therefore complement this
regression by a second logit regression capturing the effects of the probability
to be last, the degree of risk aversion and the price.

The results of both regressions are in columns I and II of Table III. The
coefficient estimates and significance levels are very similar to the baseline
case. Very few “step 0” enter the bubble but the proportion is not zero:
3/35. The propensity to enter bubbles increases with the number of steps
of iterated reasoning. A Wald test of equality of the coefficients of the two
dummies which capture the number of steps indeed indicates a p-value of
0.00. This propensity also increases when subjects know they are not last.
A Wald test of equality of the coefficients of dummies which capture the fact
that subjects know, or not, that they are not last reports a p-value of 0.00.
In particular, when there is no price cap, the propensity to enter bubbles is
very high: in this case, 100% of the 22 subjects buy the asset after receiving
a price of 1 or 10.

A first look at the effect of learning in our experiment is offered by adding
to the data set the fifth replication of the learning experiment. We then
include in the experiment a dummy variable indicating that the observation
corresponds to the fifth session and we interact this dummy with the other
explanatory variables of interest, that is, either the number of steps of iterated
reasoning, or whether subjects know that they are not last or not.

The results are in column III and IV of Table III. Overall, the coefficients
of the fifth replication dummy variable and its interactions appear mostly
negative but insignificant. This seems to indicate that the propensity to
enter bubbles is not really lower during the fifth period.

To investigate further this result, we focus on the 66 subjects who par-
ticipated in the five replications and we run a panel logit regression that
controls for period and individual fixed-effects. We drop 30 observations
corresponding to 6 subjects who always buy.12 Our regression uses the set

12Out of these 6 subjects, 3 participated in the session with no cap, 1 in the session with
K = 1 and 2 in the session with K = 10, 000. No subject never buys.
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Table 3: Logit Regression on the Buy Decision

of explanatory variables detailed above, aggregating “step-0” and “step-1”
observations due to the low number of “step-0” observations. In addition,
we include the following variables: a dummy that indicates that a subject
bought and lost at least once in a previous replication and that he or she is
not sure to be last, a dummy that indicates that a subject bought and won
at least once in a previous replication and that he or she is not sure to be
last, and a dummy that indicates that a subject has been last and knew it at
least once in a previous replication. The first two dummies are designed to
capture reinforcement or belief-based learning.13 The last dummy captures
the behavior of subjects that have experienced what it means to receive the
highest potential price. To capture potential wealth effects, we also include
an additional control variable, namely the accumulated gains of a subject.

The results are in Table IV. As before, a subject’s propensity to buy
the overvalued asset significantly increases with the number of steps of iter-
ated reasoning needed to derive the equilibrium strategy, and significantly
decreases with his probability to be last and with his risk aversion. Our esti-
mation further shows that learning has an ambiguous effect on the propensity
to enter a bubble: subjects tend to speculate more after good experiences

13See Camerer and Ho (1999) for a theoretical and experimental analysis of learning in
games.
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Coefficient Statistic p-value

Constant 0.59 0.38 0.707

Dummy which equals 1 when two or more steps of iterated 

reasoning from maximal price and not last 50.24 8.99 0.000

Dummy which equals 1 when two or more steps of iterated 

reasoning from maximal price and maybe last 45.29 8.11 0.000

Dummy which equals 1 when there is no cap and not last 8.52 3.15 0.002

Dummy which equals 1 when there is no cap and maybe last 2.88 1.30 0.193

Dummy which equals 1 when the subject bought and lost at least 

once in a previous replication and when he or she is not sure to be 

last  -3.15 -3.38 0.001

Dummy which takes value 1 when the subject bought and won at 

least once in a previous replication and when he or she is not sure 

to be last 2.24 1.59 0.113

Dummy which takes value 1 when the subject has been last and 

knew it at least once in a previous replication 2.54 1.63 0.103

Accumulated gains  -0.42 -2.86 0.004

Risk aversion  -31.07  -8.16 0.000

Dummy which takes value 1 in the 2nd period 0.11 0.12 0.903

Dummy which takes value 1 in the 3rd period 1.63 1.53 0.126

Dummy which takes value 1 in the 4th period 2.27 1.68 0.093

Dummy which takes value 1 in the 5th period 4.94 3.17 0.002

Log likelihood  -65.29

Number of observations 300

Table 4: Panel Logit Regression on the Buy Decision
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and less after bad experiences. Overall, it is thus not clear that learning
leads, at least rapidly, to the no-bubble equilibrium. Finally, it seems that
those who have been confronted with the highest price may be more likely
to buy when they are subsequently not sure to be last. This might be due
to the fact that they realize the complexity of the game and are more ready
to bet on other subjects’ mistakes.

8.2 Professional experience

In order to study how experienced business people behave as far as bubble
formation is concerned, we run exactly the same experiment as in the baseline
case except for the origin of the subjects and for experimental incentives.
Subjects are now students from the Executive MBA program at the London
Business School. Instead of playing for euros, they played for fine chocolate
boxes (worth 5 euros each). There is thus a five-time increase in the scale
of the incentives. If a subject buys the asset, he ends up with 10 chocolate
boxes if he is able to resell and 0 box if he is not. If he decides not to buy,
he keeps the chocolate box. The rest of the design is exactly the same as in
the baseline case (subjects played only once).14 This experiment includes 54
subjects. There is only one session with a cap of 10.000 on the first price.
The minimum, median, maximum, and average gains in this experiment are
respectively 0, 1, 10, and 3.08 chocolate boxes. This experimental design is
summarized in Table V.

Session # Replications # Subjects cap on initial price, K Equilibrium
17 1 54 10.000 no-bubble

Table 5: Experimental design of the experiment with LBS students

Our results are obtained thanks to a logit regression of the probability to
buy the asset. We pool the 54 observations corresponding to LBS executive
students with the 63 subjects from Toulouse University who played the one-
shot game with a cap at 10.000. Overall we thus have 117 observations.
We pool step-0 subjects with step-1 or 2 subjects as there are only 2 step-0
subjects who never buy. The explanatory variables are variables 3 and 4, a

14In the interest of time, we did not measure the level of risk aversion of the Executive
MBA students.
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dummy indicating that a subject is an executive from LBS, and two dummy
interacting variables 3 and 4 with the dummy LBS. We also include as control
variable the proposed price.

Table 6: Logit Regression on the Buy Decision, LBS students

The results are in Table VI. Overall, the behavior of LBS subjects ap-
pears very similar to the one of the other subjects as the coefficients are not
statistically significant.
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